PM1-101045 00/04.12 **HYDROVAR®** 2.015 / 2.022 4.022 / 4.030 / 4.040 4.055 / 4.075 / 4.110 4.150 / 4.185 / 4.220

ORIGINALBETRIEBSANLEITUNG

wicht No longer in stock

©2009 ITT Corporation - Alle Rechte vorbehalten Änderungen, Irrtum und Druckfehler vorbehalten.

Wussten Sie, dass die Lebensdauer der HÄNY-Produkte überdurchschnittlich hoch ist und durch fachgerechten Unterhalt nochmals merklich verlängert werden kann? Für die fachgerechte Wartung und Instandhaltung Ihrer Pumpe empfehlen wir Ihnen deshalb den Abschluss eines **Wartungsvertrages**. Bitte verlangen Sie die entsprechenden Unterlagen bei unserem Kundendienst.

Adresse:

Ihr Servicespezialist Tel. 0848 786 736 12 Servicestellen 1 Nummer

Häny AG Pumpen, Turbinen und Systeme Buechstrasse 20 CH-8645 Jona Schweiz

Tel.: +41 44 925 41 11 Fax: +41 44 923 38 44

E-Mail: info@haeny.com Web: www.haeny.com

Inhaltsverzeichnis

1		Wichtige Sicherheitsbestimmungen	5
2		Anlagenschema für Druckerhöhungsanlage	8
	2.1	Membranspeicher	8
3		Produktübersicht	9
-	3 1	Hardware Konfigurationen	9
	2.1	Detrickeerten	•
	3.Z	3 2 1 Stellerbetrieb (nur für Einzelnumpent)	9 a
		3.2.2 Reglerbetrieb	
		3.2.3 Kaskade Seriell/Synchron (nicht für SINGLE Version)	10
		3.2.4 Kaskade Relais (nicht für SINGLE Version)	
4		Typencode	13
5		Technische Daten	14
	5.1	Allgemeine Technische Daten	15
	5.2	EMV Grundlagen:	
6		Maße und Gewichte	17
7			
/		Module	
8		Mechanische Installation	22
	8.1	Mitgeliefertes Zubehör	22
	8.2	Optionales Zubehör	22
		8.2.1 Montagezubehör	
		8.2.2 Sensoren (4-20mA)	
		8.2.5 Filter / Net2drossem	
		8.2.5 Motorkabel für Direktmontage	
	8.3	Montageanleitung für Motoraufbau	
9		Elektrische Installation und Verkabelung	25
-	91	Schutzmaßnahmen	25
	0.7		
	9.2		
	9.3	Emptohlene Kabeltypen	27
	9.4	Verkabelung und Anschlüsse	28
		9.4.1 Anschlussklemmen	
		9.4.2 Motor Anschluss	
		9.4.3 Leistungsteil	
		9.4.3.1 SOIO KUN	32 4 د
		9.4.5.2 Aulessielully 9.4.4 Funkonstörschaltor	
		9.4.5.1 Steuerkarte – HYDROVAR MASTER Inverter	
		9.4.5.2 Relais Karte	
		9.4.5.3 Steuerkarte – SINGLE Inverter	

10		Programmierung	49
	10.1	Display und Bedienerfeld für MASTER / SINGLE Inverter	49
	10.2	Tastenfunktion	49
	10.3	Anzeige für BASIC Inverters (nur HV 2.015 – 4.110)	50
	10.4	Software Parameter	51
	10.3	00 HAUPTMENUE	51
	10.4	20 SUBMENUE STATUS	56
	10.5	40 SUBMENUE DIAGNOSE	59
	10.6	60 SUBMENUE EINSTELLUNGEN	60
	10.7	0100 SUBMENUE GRUNDEINST.	61
	10.8	0200 SUBMENUE KONFIG INVERTER	64
	10.9	0300 SUBMENUE REGLER	72
	10.10	0400 SUBMENUE SENSOREN	74
	10.11	0500 SUBMENUE FOLGE REG <mark>ELUNG</mark>	77
	10.12	0600 SUBMENUE FEHLER	82
	10.13	0700 SUBMENUE AUSGAENGE	83
	10.14	0800 SUBMENUE SOLLWERTE	84
	10.15	0900 SUBMENUE OFFSET	86
	10.16	1000 SUBMENUE TESTLAUF	89
	10.17	1100 SUBMENUE SETUP	90
	10.18	1200 SUBMENUE RS485-SCHNITTSTELLE	91
11		Fehlermeldungen	92
	11.1	BASIC Inverter	93
	11.2 N	MASTER Inverter/ SINGLE Inverter	94
	11.3	Interne Fehler	97
12		Wartung	99
13		Menüübersicht	00

Beachten Sie die Pumpen-, Bedienungs- und Wartungsanleitungen Wir behalten uns das Recht vor, die technischen Anforderungen zu ändern

1 Wichtige Sicherheitsbestimmungen

Vor der ersten Inbetriebnahme muss die Bedienungsanleitung sorgfältigst gelesen werden. Alle Installationen bzw. Änderungen müssen von qualifizierten Fachkräften durchgeführt werden.

Macht darauf aufmerksam, dass bei Nichtbeachtung der Vorschriften eine Gefährdung durch elektrische Energie gegeben ist.

Macht darauf aufmerksam, dass bei Nichtbeachtung der Vorschriften das Risiko einer Gefährdung von Personen und/oder Sachen gegeben ist.

Beachten Sie neben den Hinweisen in dieser Bedienungsanleitung die allgemeingültigen Sicherheits- und Unfallverhütungsvorschriften!

Grundsätzlich ist vor jedem Eingriff in den elektrischen oder mechanischen Teil der Anlage der HYDROVAR von der Netzspannung zu trennen.

Installations-, Wartungs-, und Reparaturarbeiten dürfen nur von eingewiesenem, fachlich geeignetem und qualifiziertem Personal durchgeführt werden.

Eigenmächtige Umbauten oder Veränderungen an der Anlage schließen jede Gewährleistung aus.

Im Betriebszustand kann der Motor durch das Öffnen eines Digitaleingangs oder durch manuelles Stoppen angehalten werden, wobei der HYDROVAR sowie der Motor unter Spannung bleiben. Wenn aus Gründen der Sicherheit für das Bedienerpersonal ein versehentliches Anlaufen des Motors ausgeschlossen werden muss, sind die oben genannten Stoppfunktionen nicht ausreichend. In diesem Fall ist der HYDROVAR von der Netzspannung zu trennen.

Bei Anschluss des HYDROVAR an die Netzspannung werden die Bauelemente des Leistungsteiles, sowie auch bestimmte Elemente des Steuerteiles mit der Netzspannung verbunden.

Bei Berühren dieser Bauelemente besteht Lebensgefahr!

Vor Öffnen des Gehäuses ist die Anlage vom Versorgungsnetz zu trennen. Nach Abschalten der Netzspannung sind **mindestens 5 Minuten** zu warten, bevor mit Arbeiten am oder im HYDROVAR begonnen werden kann (die Kondensatoren im Zwischenkreis müssen erst über die eingebauten Entladewiderstände entladen werden).

Es sind Spannungen bis 800 V möglich (im Störungsfall auch höher!).

Alle Arbeiten bei offenem HYDROVAR dürfen nur von eingeschultem Fachpersonal durchgeführt werden.

Weiters ist zu beachten, dass beim Anklemmen der externen Steuerleitungen kein Kurzschluss an den benachbarten Bauelementen verursacht wird, und dass nicht verwendete, offene Kabelenden unbedingt isoliert werden.

Der HYDROVAR enthält elektronische Sicherheitseinrichtungen, die im Störungsfall den Leistungsteil abschalten, wodurch der Motor stromlos, jedoch nicht spannungsfrei wird, und zum Stillstand kommt. Ein Motorstillstand kann auch durch mechanisches Blockieren hervorgerufen werden. Bei einer elektronischen Abschaltung ist der Motor über die Elektronik des HYDROVAR stromlos geschaltet, aber nicht potentialfrei.

Außerdem können Spannungsschwankungen, insbesondere Netzausfälle, zu einer Abschaltung führen.

Die Behebung einer Störungsursache kann dazu führen, dass der Antrieb wieder selbstständig anläuft!

Die Anlage darf nur geerdet in Betrieb genommen werden. Weiters ist auch für einen Potentialausgleich aller Rohrleitungen zu sorgen. Lokale Installationsstandards sind zu beachten!

Bei Hochspannungstests des HYDROVAR oder des angeschlossenen Motors kann die Elektronik beschädigt werden! Die Ein- und Ausgangsklemmen des HYDROVAR sind deshalb vorher kurzzuschließen (L1-L2-L3 / U-V-W miteinander verbinden). Um Fehlmessungen durch die internen Kondensatoren in der Elektronik zu vermeiden, muss der Elektromotor vom HYDROVAR elektrisch getrennt werden.

Die Bedienungsanleitung muss von dem zuständigen Bedienungspersonal gelesen, verstanden und beachtet werden. Weiters weisen wir darauf hin, dass wir für Schäden und Betriebsstörungen, die sich aus der Nichtbeachtung der Betriebsanleitung ergeben, keine Haftung übernehmen.

Transport, Handhabung, Aufbewahrung, Entsorgung:

- Überprüfen Sie den HYDROVAR gleich bei Anlieferung bzw. Eingang der Sendung auf Vollständigkeit oder Schäden
- Der Transport muss fachgerecht und schonend durchgeführt werden
- Harte Stöße unbedingt vermeiden

ACHTUNG!

Entsorgen Sie die Verpackungsteile und das Gerät entsprechend den örtlichen Vorschriften.

Genauere Informationen zum Recycling dieses Produkts erhalten Sie von Ihrer Stadtverwaltung, von Ihrem Müllabfuhrunternehmen oder im Geschäft, in dem Sie das Produkt erworben haben.

VORSICHT!

Hebehilfen (z.B. Stapler, Kran, Kranvorrichtung, Flaschenzüge, Anschlagseile, usw.) müssen für das Gewicht des HYDROVAR ausreichend dimensioniert sein.

VORSICHT!

Der HYDROVAR darf unter keinen Umständen mit den angeschlossenen Kabeln angehoben werden. Während des Transportes Kabel nicht beschädigen (nicht einklemmen, knicken oder nachschleifen). Kabelenden unbedingt trocken halten.

WARNUNG!

- Nicht unter schwebenden Lasten aufhalten
- Allgemeine Unfallverhütungsvorschriften beachten
- Solange der HYDROVAR nicht am endgültigen Aufstellungsort befestigt ist, muss er gegen Umkippen und Abrutschen gesichert sein

2 Anlagenschema für Druckerhöhungsanlage

Die beiden Abbildungen zeigen den typischen Aufbau einer Drucksteigerungsanlage mit einer bzw. mehreren HYDROVAR. Der Anschluss der Anlage beispielsweise kann direkt an das Ortsnetz erfolgen. Saugseitig ist dann ein Zulaufdruckschalter als Wassermangelsicherung vorzusehen.

2.1 Membranspeicher

Der Membranspeicher wird druckseitig nach der Pumpe angeschlossen, um den Druck im System für das automatische Abschalten der Anlage (kein weiterer Verbrauch) zu speichern. Bei Anwendung mit HYDROVAR ist kein großes Speichervolumen notwendig. Der Membranspeicher muss dem Anlagendruck standhalten.

Der Membranspeicher sollte eine Kapazität von mindestens 10% des maximalen Durchflusswertes (in l/min.) einer Pumpe haben (gilt auch bei Anlagen mit mehreren Pumpen).

Beispiel:

Maximale Fördermenge der Pumpe = 250 Liter pro Minute Kapazität des Membranspeicher = $250 \times 0.10 = 25$ Liter

Einstellung des Vorpressdruckes:

<u>Achtung:</u> Der richtige Vorpressdruck kann nur im drucklosen Zustand überprüft bzw. eingestellt werden!

3 Produktübersicht

3.1 Hardware Konfigurationen

Das modulare HYDROVAR Konzept setzt sich grundsätzlich aus zwei Hauptkomponenten zusammen- und zwar dem Leistungsteil und der Steuereinheit.

In der Grundkonfiguration (bestehend nur aus dem Leistungsteil) kann der HYDROVAR als sog. "BASIC Inverter" verwendet werden.

In dieser Ausführung findet der HYDROVAR Anwendung entweder als Folgepumpe in einem Mehrpumpen System oder als Softstarter (inklusive aller Schutzeinrichtungen) für Einzelpumpenanwendung.

Durch Verwendung dieses "BASIC Inverters" in Kombination mit einer der verfügbaren Steuereinheiten, kann der HYDROVAR entweder zu einem sog. SINGLE oder MASTER erweitert werden.

BASIC Inverter – HYDROVAR in Grundkonfiguration (ausgenommen HV4.150 – 4.220)

Anwendung:

- Softstart/Stopp für Einzelpumpe, als Folgepumpe in einem Mehrpumpen System

SINGLE Inverter – HYDROVAR inklusive Steuereinheit zur Einzelpumpenregelung. Diese Variante unterstützt keine optionalen Module wie z.B. die Relaiskarte.

<u>Anwendung:</u>

- Drehzahlregelung einer Einzelpumpe

MASTER Inverter – HYDROVAR inklusive Steuereinheit (mit vollem Funktionsumfang).

Anwendung:

- Drehzahlregelung einer Einzelpumpe mit zusätzlichen Anforderungen
- Regelung eines Mehrpumpen Systems bestehend aus "MASTER Inverter" und "BASIC Inverter" (bis zu 8 Pumpen können verknüpft werden)
- Regelung eines Mehrpumpen Systems bestehend aus bis zu 8 "MASTER Inverter"
- in Verbindung mit der optionalen "Relaiskarte" können bis zu 5 starre Pumpen angesteuert werden

3.2 Betriebsarten

3.2.1 Stellerbetrieb (nur für Einzelpumpen!)

Der HYDROVAR arbeitet im Stellerbetrieb über ein externes Frequenzsignal oder mittels Umschaltung zwischen 2 programmierten Fixdrehzahlen (Umschaltung über digitalen Eingang).

Diese Betriebsart wird vorwiegend in Verbindung mit einem externen Regler verwendet, wobei der HYDROVAR hier nur als Stellglied arbeitet.

Dieser Modus kann nur bei HYDROVAR "MASTER Inverter" oder "SINGLE Inverter" verwendet werden und ist nur bei Einzelpumpensteuerung möglich.

3.2.2 Reglerbetrieb

Vollautomatische Regelung einer Einzelpumpe mit HYDROVAR ohne direkte Schnittstellenverbindung zu weitere HYDROVAR Geräte.

3.2.3 Kaskade Seriell/Synchron (nicht für SINGLE Version)

In diesen Betriebsarten können einzelne HYDROVAR mit MASTER oder BASIC Konfiguration über die interne Schnittstelle zu einem System (Mehrpumpenanlage) zusammengefasst werden. Grundsätzlich ist jede beliebige Kombination bestehend aus "MASTER Inverter" und "BASIC Inverter" möglich, es muss jedoch mindestens ein "MASTER Inverter" im System vorhanden sein.

Jede der einzelnen Pumpen ist hier mit eigenem HYDROVAR ausgestattet, welche über die interne RS485 Schnittstelle verbunden (Kommunikation über MODBUS-Protokoll 9600 Baud, RTU, N81).

Aufgrund des internen Datentranfers ist ein "MASTER Inverter" ständig über den aktuellen Status einzelner "BASIC Inverter" informiert. Alle Störungen der Anlage werden dadurch an einem oder mehrere "MASTER Inverter" mit Datum und Uhrzeit des Auftretens angezeigt.

Die gesamte Regelung wird jeweils über die aktuelle Führungspumpe (MASTER Inverter) abgewickelt. Eine automatische, zyklische Umreihung der Folgepumpen ist inkludiert. Fällt der letzte "MASTER Inverter" aus, können einzelne "BASIC Inverter" manuell über einen externen Schaltkontakt (z.B. Druckschalter) im Netzbetrieb gesteuert werden.

Anwendungsbeispiele

Die Kombination verschiedener HYDROVAR, welche in einem Mehrpumpensystem verwendet werden hängt im Wesentlichen von der Systemanforderung ab (z.B. in einem 6 Pumpensystem können 2 "MASTER Inverter" und 4 "BASIC Inverter" verwendet werden – um ausreichende Betriebssicherheit zu gewährleisten).

Minimum: 1 HYDROVAR "MASTER Inverter", die restlichen Pumpen mit "BASIC Inverter"

Für die Erhöhung der Betriebsicherheit eines Mehrpumpensystems wird die Verwendung eines zweiten "MASTER Inverters" empfohlen.

Ausführung mit maximaler Funktionalität: Jede Pumpe mit eigenem "MASTER Inverter".

Alle Pumpen können sowohl als Kaskade Seriell wie auch als Kaskade Synchron arbeiten. Jede Pumpe kann als "Führungspumpe" verwendet werden und wird innerhalb der Gruppe automatisch umgereiht. Bei Ausfall eines "MASTER Inverters", übernimmt ein anderer die Führungsaktivität und sichert somit die stabile Regelung des Systems. Dies garantiert zusätzlich eine gleichmäßige Aufteilung der gesamten Betriebsstunden auf jede der einzelnen Pumpen.

3.2.4 Kaskade Relais (nicht für SINGLE Version)

Diese spezielle Anwendung ermöglicht eine Mehrpumpenregelung über einen HYDROVAR "MASTER Inverter" (inkl. optionaler Relaiskarte) und zusätzlich bis zu 5 starre Pumpen, welche bedarfsabhängig zu/abgeschaltet werden können.

Hierfür ist in jedem Fall ein externer Schaltkreis notwendig, um die starren Pumpen leistungsmäßig zu schalten, da dies über den HYDROVAR nicht direkt möglich ist. Durch indirekte Ermittlung der Laufzeiten der starren Folgepumpen wird die Zu/Abschaltung so gewählt, dass die Betriebsstunden aller starren Pumpen in etwa gleich aufgeteilt sind. Diese Variante stellt zwar eine kostengünstige Alternative zur Mehrpumpenregelung dar, es ist aber hier in jedem Fall auf die eingeschränkte Betriebssicherheit der Anlage zu achten.

Anwendungsbeispiel

Anlagen mit bis zu 6 Pumpen, wobei eine Pumpe über HYDROVAR drehzahlgeregelt wird und die anderen mit fixer Drehzahl zu- und abgeschaltet werden (1 HYDROVAR MASTER Inverter + optionale Relaiskarte + 5 starre Pumpen erforderlich).

Der HYDROVAR in diesem Beispiel ist aufgrund des Typencode mit folgenden technischen Daten spezifiziert:

Versorgungsspannung:	3~/3~ 380-460VAC
Nennleistung:	4 kW
Hardware Konfiguration:	Motormontage - MASTER Inverter
Schutzart:	IP 55
EMV-Filter:	B= Wohnhausumgebung
Optionales Zubehör:	Display, Relais-Karte
Hardware Version:	G
Sprache:	1: Westeuropa (EN, DE, IT, PT, ES, FR, NL) bzw. alle
Software Version:	V01.4

5 Technische Daten

HYDROVAR		Netzversorgung (Werte dienen nur zur Bemessung der Zuleitung und sind nicht zur Wirkungsgradberechung heranzuziehen)			
Туре	Nenn- leistung	Eingangsspannung 48-62 Hz	max. Strom [effektiv]	Netzvorsicherung [empfohlen]	max. Anschlusskabel Querschnitt
HV	[kW]	[V]	[A]	[A]	[mm ²]
2.015	1,5	1x230 + 15%	14,0	20	10
2.022	2,2		20,0	25	10
4.022	2,2		7,4	13	
4.030	3	3x380-460 ± 15%	9,1	13	10
4.040	4		11,7	16	
4.055	5,5		17,5	20	
4.075	7,5	3x380-460 ± 15%	22,1	25	10
4.110	11		29,9	32	
4.150	15		39,0	50	
4.185	18,5	3x380-460 ± 15%	48,1	50	25
4.220	22		55,9	63	

HYDROVAR		Ausgang zum Motor			
Туре	Leistung	Spannung	Nennstrom	Motor-Anschlusskabel	
HV	[kW]	[V]	[A]	mm²	
2.015	1,5	3711	7	4x15 - 4x4	
2.022	2,2	JA O _{in}	10	-77,5 -77-	
4.022	2,2		5,7		
4.030	3	3x U _{in}	7	4x1,5 – 4x4	
4.040	4	2 4	9		
4.055	5,5		13,5		
4.075	7,5	Зх U _{in}	17	4x2,5 – 4x6	
4.110	11		23		
4.150	15		30	4×6 4×25	
4.185	18,5	Зх U _{in}	37	470 - 4723	
4.220	22		43	4x10 – 4x25	

Die technischen Daten des HYDROVAR müssen mit den Daten der Pumpe abgestimmt werden.

Unpassende Kombinationen könnten zu Fehlermeldungen und zu Ausfällen der Schutzeinrichtungen des Motors führen.

Der Nennstrom des Motors muss dem Nennstrom des HYDROVAR liegen, um Überhitzung oder Fehlerabschaltung "ÜBERLAST" zu verhindern.

Der max. Ausgangsstrom des HYDROVAR kann über 110% des Nennstroms (für max. 60s) erreichen, bevor die Schutzfunktion "ÜBERLAST" den HYDROVAR abschaltet.

5.1 Allgemeine Technische Daten

Umgebungstemperatur:	0° C +40°C Bei höheren Temperaturen ist eine entsprechende Reduzierung des Ausgangsstromes bzw. Verwendung des nächst größeren HYDROVAR notwendig!				
Lagertemperatur:	-25° C +55° C (+70°C während max. 24 Stunden)				
Feuchtigkeit:	RH max. 50% bei 40°C, unbeschränkt RH max. 90% bei 20°C, max. 30 Tage im Jahr 75% Jahresmittel (Klasse F) Eine Betauung ist nicht zulässig!				
Luftverunreinigung:	Die Luft darf trockenen Staub, wie er in Arbeitsräumen, ohne besondere Staubentwicklung durch Maschinen vorkommt, enthalten. Ungewöhnliche Staubmengen, Säuren, korrosive Gase, Salze etc. sind nicht erlaubt				
Aufstellungshöhe:	max. 1000 m über Meeresspiegel Bei Aufstellungsorten höher als 1000 m über Meeresspiegel muss eine Reduzierung der maximalen Leistung (1% pro zusätzlichen 100m) vorgenommen werden. Ist die Aufstellung höher als 2000 m über Meeresspiegel, bitte beim Hersteller anfragen.				
Schutzart:	HV 2.015 / 2.022 HV 4.022 / HV 4.033 / HV 4.040 HV 4.055 / 4.075 / 4.110 HV 4.150 / 4.185 / 4.220				
Zertifikate:	CE, UL, C-Tick, cUl				

5.2 EMV Grundlagen:

Die EMV Anforderungen am HYDROVAR selbst sind abhängig von den Anforderungen am Installationsort und können durch Verwendung der bereits integrierten (für Klasse C3) oder zusätzlichen Filter (für Klasse C2 – nur bei HV2.015-4.110) entsprechend eingehalten werden.

 Erste Umgebung – Klasse B (EN61800-3: Klasse C2)
 z.B. Wohnbezirke; in diese Umgebung fallen auch Einrichtungen, die ohne eigenen Transformator direkt an das Niederspannungsversorgungsnetz angeschlossen sind, welches Gebäude versorgt, die für Wohnzwecke benutzt werden.
 Beispiele: Häuser, Wohnungen, Geschäfte oder Büros in Wohngebäuden.

Achtung:

Die relevanten EMV Normen nach denen der HYDROVAR für diese Umgebung getestet wurde, beinhalten zusätzlich, dass es sich hier um ein eingeschränkt erhältliches Produkt handelt. D.h. Umrichterspannung ist < 1000 V, Gerät ist weder steckerfertig noch mobil verwendbar. Bei Verwendung in dieser Umgebung darf die Installation und Inbetriebnahme nur von geeignetem Fachpersonal durchgeführt werden, welches über Kenntnisse in der Installation, sowie Inbetriebnahme von Antriebsmaschinen, sowie deren EMV relevanten Richtlinien verfügt.

• Zweite Umgebung – Klasse A (EN61800-3: Klasse C3)

Für elektrische Einrichtungen, die an ein industrielles Niederspannungs-Versorgungsnetz angeschlossen sind oder an öffentliche Netze, die keine Haushalte versorgen.

Beispiele: Industriegebiete und technische Bereiche von Gebäuden, die von einem eigenen Transformator gespeist werden.

Der HYDROVAR erfüllt die allgemeinen EMV- Richtlinien und ist nach folgenden Standards getestet: EN 61800-3 (2004)

EN 55011	(2002)	Funkstörungen	- Grenzwerte ι	und Messverfahren
----------	--------	---------------	----------------	-------------------

	Erste Umgebung- Klasse B	Zweite Umgebung – Klasse A	
Störspannungen	ОК	ОК	
	*)	ОК	
*) Warnung: In Wohnumgebungen könnte es durch dieses Produkt zu Störungen			

kommen-möglicherweise sind zusätzliche Abhilfemaßnahmen notwendig.

EN 61000-4-2 (2001)	Prüfung der Störfestigkeit gegen Entladung statischer Elektrizität
EN 61000-4-3 (2002)	Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder
EN 61000-4-4 (2001)	Prüfung der Störfestigkeit gegen schnelle transiente elektrische
EN 61000-4-5 (2001) EN 61000-4-6 (1996)	Störgrößen/Burst Prüfung der Störfestigkeit gegen Stoßspannungen Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder

6 Maße und Gewichte

<u>HV 2.015 / 2.022</u> <u>HV 4.022 / 4.030 / 4.040</u>

Abmessungen in Millimeter! Hebezeuge müssen richtig dimensioniert sein!

Zeichnungen nicht maßstabsgetreu!

Туре	Gewicht		
\mathcal{P}		[kg]	
	BASIC	MASTER/SINGLE	
HV 2.015			
HV 2.022			
HV 4.022	4,00	4,40	
HV 4.030]		
HV 4.040			

a ... Mindestabstand (Mitte-Mitte) zw. HYDROVAR

300 [mm] 300 [mm]

b ... Freiraum für Wartung

HV 4.055 / 4.075 / 4.110

Abmessungen in Millimeter! Hebezeuge müssen richtig dimensioniert sein!

Туре	Gewicht		
	[kg]		
	BASIC	MASTER/SINGLE	
HV 4.055			
HV 4.075	7,70	8,10	
HV 4.110			

a ... Mindestabstand (Mitte-Mitte) zw. HYDROVAR

b ... Freiraum für Wartung

430 [mm] 300 [mm]

HV 4.150 / 4.185 / 4.220

Zeichnungen nicht maßstabsgetreu!

Abmessungen in Millimeter! Hebezeuge müssen richtig dimensioniert sein! . thomas

a	Mindestabstand (Mitte-Mitte) zw. HYDROVAR	550 [mm]
b	. Freiraum für Wartung	300 [mm]

7 Module

Durch den modularen Aufbau kann die Ausführung des HYDROVAR Gerätes je nach Anwendung spezifisch konfiguriert werden.

Je nach Anforderung an Betriebssicherheit und Kosteneffektivität stehen verschiedene Varianten bzw. optionale Module zur Verfügung.

(1) Leistungsteil

kann alleine als BASIC Inverter oder als einfacher Softstarter verwendet werden. In Kombination mit einer Steuerkarte (4) kommt der Leistungsteil als MASTER oder SINGLE Inverter zum Einsatz.

(2) Filterkarte

zur Einhaltung der EMV – Anforderungen bei Installation in erster Umgebung – Klasse C2 – nur verfügbar für HV2.015 – 4.110

(nicht erhältlich für HV4.150 – 4.220, nur Klasse C3 - zweite Umgebung möglich)

(3) Montage - Kit:

besteht aus Trägerteil sowie Schirmblech um die Steuerkarte und das Display (eventuell Relaiskarte) auf dem Leistungsteil zu fixieren. Auf dem Schirmblech sind Schirmbügel vorhanden, die zur großflächigen Auflegung der Abschirmung zu verwenden sind, um äußere Störeinflüsse zu minimieren.

(4) Steuerkarte:

je nach Ausführung in MASTER und SINGLE Inverter verwendet.

(5) Display Einheit

2- zeilige Anzeige in Klartext zur Ablesung und Programmierung.

(6) Relaiskarte:

Ermöglicht die Ansteuerung von bis zu 5 starren Pumpen. (funktioniert nur in Verbindung mit "MASTER Inverter")

21

8 Mechanische Installation

8.1 Mitgeliefertes Zubehör

inkludierte Komponenten	Kabelverschraubung + Gegenmutter			Blindstopfen		PTC Motor	Montage Klammer	Zentrier- stück			
	М	М	М	М	М	М	М	М			
	12	16	20	25	40	12	16	50			
Klemmbereich Kabel [mm]	2 - <i>1</i> '8	4,5 - 10	7 - 13	21 - 6	15 – 23				ň,		
2.015 – 2.022	2 (3)	2	2			3	1		1	4	1
4.022 - 4.040 4.055 - 4.110	2 (3) 2 (3)	2 2	2	2		3 3	1	$\langle \cdot \rangle$	1	4	1
4.150 – 4.185 4.220	4 (5) 4 (5)	2 2			2 2	4 4	2	1 1		4 4	1 1

() max. Anschlussmöglichkeit

8.2 Optionales Zubehör

8.2.1 Montagezubehör

Montagering

Erhältlich für die Durchmesser: 140 mm 155 mm

Vorsicht!

Bei Motorlüfterhauben aus Kunststoff, muss aufgrund der mangelden Stabilität unbedingt ein Montagering verwendet werden.

8.2.2 Sensoren (4-20mA)

Montagering

•	Drucktransmitter	Temperaturfühler
•	Differenzdrucktransmitter	Durchflussmessung
٠	Niveausonden	(Messblenden, induktive Messaufnehmer)

8.2.3 Filter / Netzdrosseln

8.1.1 Kabeleinführung (nur für HV4.150 – 4.220) Multiverschraubung (M50)

8.2.5 Motorkabel für Direktmontage Erhältlich für HV 2.015 – 4.220

- HYDROVAR Abdeckhaube durch Lösen der 4 Befestigungsschrauben entfernen.
 - Auf Feuchtigkeitsrückstände am Gerät achten, da diese durch Öffnen in das Gerät eindringen könnten.
- Zentrierstück in den Kühlkörper des HYDROVAR einsetzen.
- HYDROVAR mit Hilfe des Zentrierstücks auf der Motorlüfterhaube positionieren.
 - Bei Motoren mit Kunststofflüfterhaube, unbedingt Montagering verwenden
- Montieren des HYDROVAR auf dem Motorlüfter; mit Hilfe der Montageklammern, der 4 Schrauben und der Sicherungsscheiben.*
- HYDROVAR nochmals zentrieren und mit den 4 Schrauben befestigen
- Die unteren Haken der Montageklammern müssen die Motorlüfterhaube fassen, Schrauben anziehen
- Nach Anschluss aller elektrischen Verbindungen die Abdeckhaube des HYDROVAR wieder montieren.
 - Auf ordnungsgemäßen Anschluss des Erdungskabels achten.
 - Gehäusedichtung kontrollieren.
 - Kabelverschraubungen auf ordnungsgemäße Dichtheit prüfen und nicht verwendete Kabeldurchführungen mittels Blindstopfen abdichten.

9 Elektrische Installation und Verkabelung

Alle Installationen und Wartungen müssen von gut ausgebildetem und qualifiziertem Personal mit Hilfe von geeignetem Werkzeug durchgeführt werden!

Bei Abschaltung oder Trennung des Versorgungsnetzes, 5 <u>Minuten</u> vor öffnen des HYDROVAR warten. Erst nach dieser Zeit sind die eingebauten Kondensatoren entladen. Nichtbeachtung kann zu Schock, Verbrennungen oder Tod führen!

Schutzmaßnahmen

Fragen Sie ggf. bei ihrem zuständigen Elektroversorgungsunternehmen (EVU) nach, welche Schutzmaßnahmen lokal notwendig sind.

Anwendung:

- Schutzerdung
- Umrichterfeste Fehlerstrom-Schutzschalter (RCD/FI/RCCB)
- Nullung

Schutzerdung:

- Beachte: Der HYDROVAR weist aufgrund der Filterkondensatoren einen erhöhten Ableitstrom auf und muss aus Sicherheitsgründen entsprechend geerdet werden.
- Die örtlichen Sicherheitsvorschriften sind einzuhalten.

Fehlerstrom-Schutzschalter (RCD / FI / RCCB):

- Bei Anwendung der Schutzmaßnahme Fehlerstrom-Schutzschalter ist sicherzustellen, dass der Fehlerstromschutzschalters auch im Falle eines Gleichstromfehlers auslöst!
 - einphasige HYDROVAR => Pulsstromsensitive FI-Schutzschalter verwenden
 - dreiphasige HYDROVAR => Allstromsensitive FI-Schutzschalter verwenden
- Bei Verwendung von Fehlerstromschutzschaltern ist darauf zu achten, dass die örtlich geltenden Vorschriften eingehalten werden!

<u> Überstrom-Schutzeinrichtung:</u>

- Die Verwendung von Leitungsschutzschaltern mit C Charakteristik wird empfohlen
- Dimensionierung der Netzvorsicherung (siehe Kapitel Technische Daten)

Interne Schutzeinrichtungen des HYDROVAR:

 Kurzschluss, Unter- und Überspannung, beziehungsweise Übertemperatur am Gerät (Überlast), werden von der eingebauten Elektronik des HYDROVAR überwacht.

Externe Schutzeinrichtungen:

• Zusätzliche Schutzfunktionen wie Übertemperatur Motor und Wassermangelsicherung werden über externe Einrichtungen überwacht.

EMV - Elektro-Magnetische Verträglichkeit

Um die elektromagnetische Verträglichkeit (EMV) zu gewährleisten, sind bei der Installation und Verkabelung von Frequenzumrichtern folgende Punkte zu berücksichtigen:

Erdung / Masse

- Schutzerdung Aufgrund des Ableitstromes und aus Sicherheitsgründen muss der HYDROVAR entsprechend geerdet werden.
- Hochfrequenz Erdung
 Erdungskabel sind so kurz als möglich zu halten
 Erdungssysteme sind mit der niedrigstmöglichen Leiterimpedanz zu verbinden.

Steuerleitung / Signalleitungen

Diese sollten generell geschirmt ausgeführt werden um Störeinstrahlungen zu verhindern. Steuerleitungen nur einseitig erden um Erdfehlerschleifen zu vermeiden (Abschirmung umrichterseitig mittels Schirmbügel oder EMV Kabelverschraubung großflächig auflegen).

Isolierung der Steuerleitung entfernen und Schirm auf Schirmbügel auflegen.

Steuerkabel / Signalleitungen / RS485 / Sensorkabel sind separat von Netz- und Motorkabel zu verlegen. Bei paralleler Verlegung muss mindestens ein Abstand von 200 mm eingehalten werden. Kreuzungen von Signalleitungen und Leistungskabel sollen vermieden werden. Falls bautechnisch nicht möglich, dann müssen die Kreuzungen in einem Winkel von 90° erfolgen.

<u>Motorkabel</u>

Um die Einhaltung der EMV Richtlinien zu gewährleisten verwenden Sie möglichst kurze Motorkabel (bei Kabel über 1,5 m sind diese geschirmt auszuführen).

Zusatzeinrichtung Netzdrossel

Netzdrosseln zwischen Hauptsicherung und dem HYDROVAR sind optional erhältlich. Installation der Netzdrossel so nah als möglich am HYDROVAR (max. 30 cm entfernt)

Vorteile:

- Verbesserter Wirkungsgrad
- Reduzierte Oberschwingungen

Verwendung bei:

- hohen Kurzschlussströmen
- unverdrosselten Kompensationsanlagen
- am Netz betriebenen Asynchronmotoren, die beim Einschalten Spannungseinbrüche >20% der Netzspannung erzeugen

EMV Zusammenfassung:

- Potentialausgleich laut Vorschrift herstellen
- Motor-, Netz- und Steuerkabel getrennt voneinander verlegen
- Nur abgeschirmte Steuerkabel verwenden
- Schirm des Motorkabels beidseitig erden.
- Schirm des Steuerkabels einseitig erden
- Motorkabel so kurz als möglich halten
- Sog. "Pigtails" (verdrillte Abschirmlitzen) sind bei der Installation zu vermeiden

Empfohlene Kabeltypen

Folgende Kabeltypen sind bevorzugt zu verwenden.

Anwendung:	Verwendeter Kabel-Typ:		
Motorkabel HV 2.015 - 2.022	4G1,5 + (2 x 0,75)		
HV 4.022 - 4.030 - 4.040	4G1,5 + (2 x 0,75)		
HV 4.055 - 4.075	4G2,5 + (2 x 0,75)		
HV 4.110	4G4 + (2 x 0,75)		
HV 4.150 – 4.185	4G6 + (2 x 0,75)		
HV 4.220	4G10 + (2 x 0,75)		
Steuer- und Signalkabel	JE-Y(ST)Y BD		
	JE-LiYCY BD		
Kabelverbindung für Schnittstelle (RS485)	JE-Y(ST)Y 2 x 2 x 0,8 BD		

Verkabelung und Anschlüsse

Lösen der 4 Befestigungsschrauben, Abdeckhaube des HYDROVAR entfernen. Folgende Teile sind zu sehen:

HV 2.015 / 2.022 / HV 4.022 / 4.033 / 4.040

HV 4.055 / 4.075 / 4.110

- (A) Versorgungsspannung
- (B) Motoranschluss
- (C) Klemmenblöcke für: Start/Stopp_PTC, SOLORUN, RS-485 Schnittstelle
- (D) RS-485 Schnittstelle (Userschnittstelle (extern), Interne Schnittstelle)
- (E) Statusrelais
- (F) Relaiskarte (optional)

9.1.1 Anschlussklemmen

Die Spannungsversorgung wird an den entsprechenden Eingangsklemmen angeschlossen:

Klemmen L + N(1 x 230 VAC, einphasig)Klemmen L1 + L2 + L3(3 x 400 VAC, dreiphasig)

9.1.2 Motor Anschluss

Montage des PTC

Variante A :

Variante B :

- 1. Klemmkastendeckel öffnen und Klemmenblock abschrauben
- 2. PTC (Variante A oder B) montieren
- 3. Klemmenblock aufsetzen und mit Schraube fixieren.
- 4. Motorkabel anschließen

Der PTC muss am Metallkörper des Motors befestigt werden, um die Temperatur des Gehäuses ordnungsgemäß erfassen zu können!

Der Anschluss des Motorkabels hängt von der Motortype ab (Stern oder Dreieck-Schaltung).

Der richtige Anschluss des Motors kann am Motortypenschild abgelesen werden, abhängig von der Ausgangsspannung des HYDROVAR.

Stern - Schaltung

<u> Dreieck - Schaltung</u>

9.1.3 Leistungsteil

Am Leistungsteil sind folgende Steuerklemmen zu finden:

HV 2.015 / 2.022 / HV4.022 / 4.033/ 4.040

Zur Erkennung einer möglichen Übertemperatur am Motor muß ein Motorthermoschalter oder PTC im Motor montiert werden.

Wenn dieser Eingang über einen externen Schalter als Freigabekontakt verwendet wird, ist zu beachten, dass in diesem Falle bei geöffnetem Kontakt der Fehler "Übertemperatur" angezeigt wird. Bei Verwendung beider Signale (PTC und Freigabe) diese in Serie an X1/PTC anschließen. Der HYDROVAR stoppt im Falle eines Fehlers! (Nach Bedarf kann auch ein Wassermangelschalter oder jeder andere potentialfreie Schutzkontakt an diese Klemmen gelegt werden!) Bei Nichtverwendung des Eingangs muss dieser gebügelt sein.

9.4.3.1 Solo Run

Der digitale Eingang X1/SL wird vorwiegend für den Notbetrieb verwendet. Dieser Eingang ermöglicht den Betrieb auf eingestellter MAX FREQUENZ [0245], falls die Kommunikation zum MASTER Inverter abbricht oder der MASTER Inverter selbst auf Störung geht. Weiters kann dieser Eingang auch zum Einfachen Starten und Stoppen eines BASIC Inverters verwendet werden.

Kontakt X1/SL geöffnet - der HYDROVAR arbeitet im ausgewählten Betriebsmodus. Ein Start erfolgt nur, wenn freigegeben oder eine Anforderung der Führungspumpe besteht (bei Mehrpumpenanlagen).

Kontakt X1/SL geschlossen – der HYDROVAR läuft hoch bis zur voreingestellten MAX. FREQUENZ [0245] unter Verwendung von RAMPE 1 und RAMPE 2 sowie den schnellen Rampen FminA und FminD.

(X1/PTC muss geschlossen werden, so dass alle externen verwendeten Sicherheitseinrichtungen weiterhin aktiv sind).

Ein manueller Start über den Eingang X1/SL ist immer möglich, auch wenn der HYDROVAR in der Ausführung MASTER Inverter verwendet wird.

Es ist möglich diese Klemmen mit einem AUTO/MANUAL Schalter auszurüsten.

Beispiel:

Externer Schalter zum Aktivieren des Solo Run.

<u>Beispiel</u>: Externe Freigabe oder Wassermangelschalter

PTC oder Thermoschalter

X3/11-12

(montiert in der Motor Klemmenbox)

Erforderliche Verbindung der externen Schutzeinheiten:

Wassermangel Schalter

BASIC Inverter:	PTC oder Thermo Schalter	X1/PTC	Am Leistungsteil	
	Externe Freigabe	X1/PTC		
	Wassermangel Schalter	X1/PTC		
MASTER Inverter:	PTC oder Thermo Schalter	X1/PTC	Am Leistungsteil	
	Externe Freigabe	X3/7-8	An der Steuerkarte	

Wird ein HYDROVAR als "BASIC Inverter" innerhalb eines Mehrpumpen-Systems verwendet, ist die interne Schnittstelle am Leistungsteil für die serielle RS-485 Verbindung zu anderen HYDROVAR Geräten zu verwenden. (Bei "SINGLE Inverter" ist diese Schnittstelle nicht aktiv).

X2 RS485-Schnittstelle – Leistungsteil SiO X2/ SIO SIO + Interne SIO-Schnittstelle: SIO Interne SIO-Schnittstelle: SIO+ Interne Schnittstelle: SIO+ GND GND, Elektronik Masse

...... Parameter nicht verfügbar für SINGLE Inverter

Die **interne RS-485 Schnittstelle** am Leistungsteil wird für die Kommunikation mit bis zu 8 HYDROVAR in einer Mehrpumpenanlage verwendet (Minimum 1 "MASTER Inverter"). Für die Verbindung der HYDROVAR Geräte über die RS-485 Schnittstelle können die Klemmen X2/1-3 am Leistungsteil doppelt belegt werden. Bei der Ausführung MASTER Inverter stehen aber auch die Klemmen X4/4-6 auf der Steuerkarte zur Verfügung.

Mechanische Verbindung der Klemmen:

- Empfohlene Kabeltypen verwenden
- Draht abisolieren (etwa 5... 6mm)
- Abisolierten Draht einstecken mit einem kleinen Schraubendreher die orange Verriegelung nach unten drücken
- Verriegelung loslassen

Entfernen:

- Drahtfixierung durch nach unten Drücken der orangefarbenen Verriegelung lösen und Draht anschließend nach oben ziehen!

Beispiel: Ein MASTER- und drei BASIC - Inverter:

9.4.3.2 Adressierung

Bei Betriebsart Kaskade Seriell oder Kaskade Synchron in einem Mehrpumpensystem (mehr als ein MASTER Inverter oder ein MASTER mit mehreren BASIC Invertern) muss vor der ersten Inbetriebnahme die entsprechende Adressierung vorgenommen werden.

MASTER Inverter - Adressierung erfolgt über Software. Zu beachten: Jeder MASTER Inverter muss hardwareseitig über Dip-Schalter am Leistungsteil auf Adresse 1 gesetzt werden (Werkseinstellung).

BASIC Inverter (nur HV 2.015 – 4.110) – individuelle Adressierung jedes vorhanden BASIC Inverters innerhalb der Gruppe erfolgt über Dip-Schalter am Leistungsteil (bereits vergebene Adressen für den MASTER Inverter sind zu berücksichtigen und dürfen nicht mehr verwendet werden).

<u>Beispiel:</u>

Mehrpumpen-System mit 3 MASTER und 4 BASIC Inverter

- Einstellen der Adressen 1-3 für den MASTER Inverter über die Softwareparameter (Siehe Submenü Konfig. Inverter [0200] oder RS485-Schnittstelle [1200])
- Einstellen der Adressen 4-7 für die einzelnen BASIC Inverter über Dip-Schalter

Die ausgewählte Adresse ist auch vera	antwortlich fü	ir die Pump	enumreihung.

Schalter 1	Schalter 2	Schalter 3	Adro	esse
OFF	OFF	OFF	Adresse 1 (We (Einstellung für I	rkseinstellung) MASTER/SINGLE)
OFF	OFF	ON	Adresse 2	ON
OFF	ON	OFF	Adresse 3	
OFF	ON	ON	Adresse 4	
ON	OFF	OFF	Adresse 5	1234
ON	OFF	ON	Adresse 6	Schalter 4 ist nicht
ON	ON	OFF	Adresse 7	in Verwendung!
ON	ON	ON	Adresse 8	

Einstellen der richtigen Adresse:

- Abschalten der Versorgungsspannung (falls bereits angeschlossen)!
- Mindestens 5 Minuten warten!

Öffnen der vier Befestigungsschrauben, Abdeckhaube des HYDROVAR entfernen (siehe auch 8.3).

Einstellen der gewünschten Adresse für jeden einzelnen HYDROVAR.
 z.B. Adresse 4 -> Schalter 1 – auf OFF

Schalter 1 – auf OFF Schalter 2 und 3 – auf ON

- Anschließend Deckel des HYDROVAR montieren und befestigen (siehe auch 8.3).
- Anschließen des HYDROVAR an die Versorgungsspannung.

<u>HV 2.015 / 2.022</u> <u>HV 4.022 / 4.033 / 4.040</u>

HV 4.055 / 4.075 / 4.110

Anschluss für externe LED (X22) Bietet die Möglichkeit eine LED anzuschließen um den Status ohne Display abzulesen (derzeit nicht verfügbar) Dip-Schalter zur Adressierung (S1) (S2) Reserve zur Reduzierung der Taktfrequenz (Funktion derzeit nicht verfügbar)
9.4.4 Funkenstörschalter

S1

HYDROVAR Geräte der Type HV4.055 – 4.220 sind mit einem zusätzlichen Filterkondensator ausgestattet, welcher eventuell auftretende hochfrequente Störungen an die unmittelbare Umgebung (sog. RFI – Radio Frequency Interferences) durch die Verwendung von längeren Motorkabeln (vor allem bei Wandmontage) vermindert.

ACHTUNG: Durch die zusätzliche Kapazität wird bei der Zuschaltung dieses Filterkondensators der Erdableitstrom erhöht. Daher sollte bei gleichzeitiger Verwendung von FI- Schutzschaltern besonders darauf geachtet werden, dass diese auch für Umrichterbetrieb geeignet ist (siehe Kapitel 9).

S1

HV4.150 – HV4.220 Schalter S1 und S2 <u>S1 – Verwendung für Überspannungstests</u> <u>Geschlossen (Werkseinstellung)</u> – standardmäßige Einstellung <u>Offen:</u> nur für Tests durch den Hersteller zu verwenden

<u>S2 – Aktivierung HF Filterkondensator</u> <u>Geschlossen (Werkseinstellung)</u>: RFI Filter aktiviert für symmetrische Netze (Europa). <u>Offen</u>: RFI Filter muss deaktiviert sein für unsymmetrische Netze (bspw. USA).

HV4.055 – HV4.110 Schalter

(befindet sich an der Vorderseite unter der Steuerkarte) <u>S1 – Aktivierung HF Filterkondensator</u> <u>Offen (Werkseinstellung)</u>: Änderung durch Endbenutzer nur nach Rücksprache mit dem lokalen Servicepartner <u>Geschlossen</u>: nur für Sonderanforderungen hinsichtlich Funkentstörung

<u>WARNUNG</u>: Die Schalterposition der einzelnen Schalter darf nicht bei angelegter Spannung erfolgen. Bevor eine Schalterposition geändert wird, muss daher der HYDROVAR vom Versorgungsnetz getrennt werden und die entsprechende Zeit für die Entladung der Kondensatoren muss abgewartet werden (siehe Kapitel 1).

S1

9.4.5 Steuereinheit

Je nach Variante sind zwei verschiedene Steuerkarten verfügbar.

Der gesamte Steuerteil des HYDROVAR MASTER Inverters besteht aus der entsprechenden Steuerkarte und kann aber zusätzlich noch mit optionalen Modulen (über Steckplätze) aufgerüstet werden. Diese Variante ermöglicht alle verfügbaren Funktionen.

Für den HYDROVAR SINGLE Inverter (nur für Einzelpumpenanlage) ist eine eigene Steuerkarte verfügbar. Diese spezielle Karte unterstützt nur die für Einzelpumpenanwendungen notwendigen Parameter und kann nicht mit optionalen Modulen aufgerüstet werden.

9.4.5.1 Steuerkarte – HYDROVAR MASTER Inverter

Die Steuerkarte ist über ein Flachbandkabel (Stecker X8) mit dem Leistungsteil verbunden.

Die Displayeinheit ist über Stecker bzw. Klemme X9 verbunden.

(je nach Montageposition kann die Anzeige 0° bzw. 180° versetzt erfolgen).

Die Steckplätze X6 und X7 sind für optionale Module vorgesehen, z.B. Verwendung einer zusätzlichen Relaiskarte für spezielle Anwendungen (Steckplatz X6).

<u>Steuerklemmen</u>

Allgemeiner Hinweis zur Verkabelung: Nur geschirmte Steuerkabel verwenden (siehe Kapitel 9.3 empfohlene Kabeltypen).

Werden Steuerleitungen ohne Abschirmung verwendet, können Signalstörungen auftreten und die Funktion des HYDROVAR beeinflussen.

Die Elektronikmasse darf nicht mit anderen Potentialen verbunden werden! Alle Elektronikmassen und die Masse der RS 485-Schnittstelle sind intern verbunden.

Für die externen Schaltkontakte ist unbedingt ein Kontakt zu verwenden, der für eine Schaltspannung < 10 VDC verwendbar ist.

X3 [Digita	al und Analog I/O		
X3/	1	GND, Elektronikmasse		0
	2	Istwerteingang Sensor 1		0-20mA / 4-20mA [Ri=50Ω]
	3	Versorgungsspannung für externen Sensor		24VDC, ** max. 100mA
	4	Istwerteingang Sensor 2		0-20mA / 4-20mA [Ri=50Ω]
	5	Istwerteingang Sensor 2	*Dig 3	0-10 VDC
	6	Istwerteingang Sensor 1	*Dig 2	0-10 VDC
	7	Externe Freigabe (ON/OFF)		Aktiv Low
	8	GND, Elektronikmasse		
	9	Digital Eingang 1	Dig 1	Aktiv Low
	10	GND, Elektronikmasse		
	11	Wassermangel		Aktiv Low
	12 GND, Elektronikmasse			
	13 Spannungseingang (Sollwert 1)		(Offset)	0-10VDC
	14 GND, Elektronikmasse			
	15	Spannungseingang (Sollwert 2)	*Dig 4	0-10VDC
	16	GND, Elektronikmasse		
	1/	GND, Elektronikmasse		
	18	Stromeingang (Sollwert 1)	(Offset)	$0-20 \text{mA} / 4-20 \text{mA} [\text{RI}=50 \Omega]$
	19	+10V Interne Ref. fur Analog Ausgang		10VDC, max. 3mA
	20 Analog Ausgang 1			0-10VDC, max. 2mA
	21	Analog Ausgang 2		4-20mA [KI=50Ω]
	22	GND, Elektronikmasse	(0)(())	
	23	Stromeingang (Soliwert 2)	(Offset)	$0-20 \text{ mA} / 4-20 \text{ mA} [\text{Ri}=50 \Omega]$
	24	+24V Versorgung für Steuereingang		24VDC, ** max. 100mA

Die Klemmen X3/5 und 6 können entweder als Istwerteingang oder als Digital Eingang verwendet werden.

Der Eingang an Klemme X3/15 kann ebenfalls sowohl als Analogeingang (0-10Vdc) oder als Digitaleingang verwendet werden.

** X3/3 und X3/24 $\rightarrow \Sigma$ max. 100mA

Offset: Diese Klemmen können als Sollwert oder als Offseteingang verwendet werden. Einstellungen siehe SUBMENUE SOLLWERT[0800] und SUBMENUE OFFSET [0900].

Der Eingang an Klemme X3/15 kann ebenfalls sowohl als Analogeingang (0-10Vdc) oder als Digitaleingang verwendet werden.

** X3/3 und X3/24 $\rightarrow \Sigma$ max. 100mA

Beispiele Verkabelung:

• Istwert Eingang

Mögliche Anschlüsse:	- A III	Standard Druck Transmitter PA22:
Istwertsignal Eingang 0/4-20mA	X3/4 Sensor 2	
+24VDC Sensor Versorgung	X3/3	braun
Istwertsignal Eingang 0/4-20mA	X3/2 Sensor 1	weiß
Masse	X3/1	

Umschalten zwischen zwei angeschlossenen Istwertsensoren

Externes Umschalten zwischen zwei Sensoren bei Verwendung des Digitaleingang 1 (X3/9-10).

Programmierung siehe: SUBMENUE SENSOR [0400].

Umschalten zwischen zwei unterschiedlichen Sollwerten

Externes Umschalten zwischen zwei externen Sollwertquellen (z.B.: zwischen externem Spannungs- und externem Stromsignal) durch Schließen des Digitaleingang 1 (X3/9-10).

Im STELLERBETRIEB ist es möglich, zwischen zwei verschiedenen Signalquellen mittels Digitaleingänge umzuschalten. Die angeschlossenen Eingangssignale (Strom oder Spannung) sind proportional zur Frequenz.

Programmieren siehe: SUBMENUE SOLLWERTE [0800].

Istwert – Frequenzanzeige

z.B. zeigt die aktuelle Frequenz Programmieren siehe: SUBMENUE AUSGÄNGE [0700].

Mögliche Anschlüsse: Analog Ausgang 1 (0-10V): X3/20 Analog Ausgang 2 (4-20mA): X3/21

X4 F	X4 RS485-Schnittstelle						
X4/	1	User-SIO-Schnittstelle: SIO-		Usor Schnittstollo			
	2 User-SIO-Schnittstelle: SIO+ 3 GND, Elektronikmasse		7	für orterne Kommunikation			
			J				
	4	Interne SIO-Schnittstelle: SIO-	J	Interne Celenittetelle			
	5 Interne SIO-Schnittstelle: SIO+		~	für Mohrnumpon System			
	6	GND, Elektronikmasse		iui mempumpen-system			

RS-485 – Interne Schnittstelle

RS-485 - User Schnittstelle

Die **interne RS-485 Schnittstelle** wird zur Kommunikation von mehreren HYDROVAR (bis zu 8) in Verwendung innerhalb einer Mehrpumpenanlage verwendet.

Für den Anschluss jedes einzelnen HYDROVAR über die RS-485 Schnittstelle werden entweder die Klemmen X4/4-6 an der Steuerkarte oder Klemmen X2/1-3 am Leistungsteil (Beispiel: Ein MASTER- und drei BASIC-Inverter) verwendet.

RS-485 – **User Schnittstelle** auf Steuerkarte (für MASTER und SINGLE Inverter): Einer oder mehrere HYDROVAR Geräte können über die standardisierte Modbus Schnittstelle mit externen Geräten (wie z.B. SPS) kommunizieren. Diese Schnittstelle kann für die Parametrierung bzw. zum Auslesen von Daten verwendet werden.

X5 S	X5 Status-Relais						
X5/	1 2 3 4	Statu	s Relais 1	CC NC NO CC	[Max. 250VAC] [0,25A] [Max. 220VDC] [0,25A]		
	5 6	Statu	s Relais 2	NC NO	[Max. 30VDC] [2A] (allg. Verwendung)		
S	Status Relay 1 Status Relay 2		lelay 2				
E ,		X5 3 NO 2 NC 1 CC		5 6 NO 5 NC 4 CC	Achtung: Bei Verwendung der Relaiskontakte zum Schalten von Schützen, ist eine Löschbeschaltung mit RC Glied oder Varistoren einzusetzen, um Störungen am HYDROVAR zu vermeiden!		

Die beiden Status-Relais auf der Steuerkarte können anwenderspezifisch konfiguriert werden.

Standardeinstellung: Relais 1 als Pumpenlaufmeldung / Relais 2 als Fehlermeldung. Siehe Beispiel unten (Programmierung siehe Parameter REL1KONF [0715] und REL2 KONF [0720]).

9.4.5.2 Relais Karte

Allgemein: Optionale Module können nur bei Konfiguration MASTER Inverter verwendet werden.

Die Relais Karte ist über den Steckplatz X6 mit der Steuerkarte verbunden. (siehe Kapitel 9.4.4.1)

Achtung: Bei Verwendung der Relaiskontakte zum Schalten von Schützen, ist eine Löschbeschaltung mit RC Glied oder Varistoren einzusetzen, um Störungen am HYDROVAR zu vermeiden!

<u>Klemmenbelegung Relaiskarte</u>

X10	Rela	is Karte	S_{0}, S_{0}	
X10/	1	Relais 1		
	2	Relais 2	[max. 250VAC] [0,25A]	
	3	Relais 3	[max. 220VDC] [0,25A]	
	4	Relais 4	[max. 30VDC] [0,25A]	
	5	Relais 5		
	6	gemeinsame Masse		

Schaltkontakte für starre Folgepumpen.

Die starren Pumpen können nicht direkt über die Relais Karte geschaltet werden

(ein externer Schaltschrank ist für die Motorschütze bzw. die Stern/Dreieck Starter notwendig)

Anschlussbeispiel:

Folgendes Schaltbild zeigt eine mögliche Anwendung der optionalen Relais Karte. Der HYDROVAR kann über diese Karte bis zu 5 starre Folgepumpen unter Verwendung der Betriebsart "Kaskade Relais" bedarfsabhängig zu/abschalten.

Für die Schaltvorgänge ist zusätzlich ein externer Schaltkasten für Direktanlauf oder STERN/DREIECK Anlauf (und optionalem Hand/Aus/Automatik-Schalter) notwendig.

<u>Beispiel:</u> 3 starre Pumpen sind über entsprechende Leistungsschütze mit der Relaiskarte verbunden. In diesem Beispiel st ein optionaler H/0/A –(Hand/Aus/Automatik-Schalter (SW1, SW2, SW3)) vorgesehen, um die einzelnen Pumpen auch manuell zu betreiben bzw. komplett auszuschalten.

<u>A/AUTO:</u> Die einzelnen Pumpen werden über den HYDROVAR bedarfsabhängig zu- und abgeschaltet.

<u>H/Hand:</u> Diese Position erlaubt einen manuellen Betrieb der Pumpen.

<u>O/AUS:</u> Ist einer der zusätzlichen Schalter in AUS Position, muss auch das passende Relais im Submenü STATUS [20] deaktiviert werden um einen korrekten Betrieb des Systems zu gewährleisten.

9.4.5.3 Steuerkarte – SINGLE Inverter

Die Steuerkarte ist über ein Flachbandkabel (Klemme X8) mit dem Leistungsteil verbunden. Die Displayeinheit ist über Klemme X9 verbunden. (je nach Montageposition kann die Anzeige 0° bzw. 180° versetzt erfolgen).

<u>Steuerklemmen</u>

Allgemeiner Hinweis zur Verkabelung: Nur geschirmte Steuerkabel verwenden (siehe Kapitel 9.3 empfohlene Kabeltypen).

Werden Steuerleitungen ohne Abschirmung verwendet, können Signalstörungen auftreten und die Funktion des HYDROVAR beeinflussen.

Die Elektronikmasse darf nicht mit anderen Potentialen verbunden werden! Alle Elektronikmassen und die Masse der RS 485-Schnittstelle sind intern verbunden.

Für die externen Schaltkontakte ist unbedingt ein Kontakt zu verwenden, der für eine Schaltspannung < 10 VDC verwendbar ist (Goldkontaktrelais).

Х3	Digit	tal und Analog I/O	
X3/	1	GND, Elektronikmasse	
	2	Istwerteingang Sensor 1	0-10VDC oder 0-20mA / 4-20mA [Ri=50Ω]
	3	Versorgungsspannung für	24 VDC max 100mA
		externen Sensor	
	4	User SIO-Schnittstelle: SIO-	
	5	User SIO-Schnittstelle: SIO+	User Schnittstelle für externe Verwendung
	6	GND, Elektronikmasse	5
	7	Externen ON/OFF (Freigabe)	Aktiv Low
	8	GND, Elektronikmasse	
	9	Digital Eingang 1	Aktiv Low
	10 GND, Elektronikmasse		0
	11 Wassermangel		Aktiv Low
	12	GND, Elektronikmasse	

Wassermangel

z.B. Druckschalter oder Wasser Niveauschalter

Digital Eingang 1

z.B. für umschalten zwischen 2 Sollwerten

Externer on/off (Freigabe)

GND, Elektronik Masse User SIO-Schnittstelle: SIO+

User SIO-Schnittstelle: SIO-

Sensor Versorgung 24VDC / max. 50 mA

Istwert Eingang Sensor 1 0-20mA / 4-20mA [Ri=50Ω]

Masse

X5 Status-Relais						
X5/	1		CC			
	2	Status Relais 1	NC			
	3		NO			
	4		CC	$\begin{bmatrix} [IIIax. 220VDC] & [0,25A] \\ [IIIax. 20VDC] & [2A] \end{bmatrix}$		
	5	Status Relais 2	NC			
	6		NO	J		

Status Relais 1	Status Relais 2	
$ \begin{array}{c} X5 \\ \hline \\ \hline$	$ \begin{array}{c} X5 \\ \hline \\ \hline$	Achtung: Bei Verwendung der Relaiskontakte zum Schalten von Schützen, ist eine Löschbeschaltung mit RC Glied oder Varistoren einzusetzen, um Störungen am HYDROVAR zu vermeiden!

Die beiden Status-Relais auf der Steuerkarte können anwenderspezifisch konfiguriert werden.

Standardeinstellung: Relais 1 als Pumpenlaufmeldung / Relais 2 als Fehlermeldung. Siehe Beispiel unten: (Programmierung siehe Parameter REL1KONF [0715] und REL2 KONF [0720]).

10 Programmierung

Vor der ersten Programmierung muss die Bedienungsanleitung sorgfältigst gelesen werden um etwaige Fehlfunktionen durch falsche Parametrierung zu verhindern! Alle Einstellungen müssen von qualifizierten Fachkräften durchgeführt werden.

Display und Bedienerfeld für MASTER / SINGLE Inverter

OK Error green red Undervoltage Overcurrent / Overload Inverter Overheat 1 Blink Motor stop 2 Blinks 3 Blinks Constant (Standby) 4 Blinks 5 Blinks 6 Blinks Overvoltage Code Error Blinking Motor run Motor Overheat (External Contact) Status LED - grün Motor stopp (Standby) Leuchtet Blinkt Motor läuft **Error LED - rot** Der angezeigte Fehler wird durch einen Blinkcode der Error LED definiert. 1 x Blinken Unterspannung 2 x Blinken Überstrom / Überlast 3 x Blinken Übertemperatur Inverter 4 x Blinken Überspannung 5 x Blinken Code Error 6 x Blinken Übertemperatur Motor (Externer Kontakt ist offen)

10.3 Anzeige für BASIC Inverter (nur HV 2.015 – 4.110)

Für detaillierte Informationen siehe Kapitel 11 Fehlermeldungen.

10.4 Software Parameter

In den folgenden Kapiteln sind alle verfügbaren Parameter der einzelnen Parametermenüs aufgelistet.

Im oberen Fenster wird immer die Werkseinstellung angezeigt, im Feld darunter die möglichen Einstellungen.

Die allgemeine Parameterbeschreibung ist für die Konfiguration HYDROVAR MASTER Inverter gültig.

Bei Verwendung des HYDROVAR SINGLE Inverter (HYDROVAR mit Steuerkarte für Einzelpumpenregelung) können nicht alle Softwareparameter verwendet werden und sind daher bei dieser Variante ausgeblendet.

Alle Parameter die beim HYDROVAR SINGLE Inverter deaktiviert sind, sind mit dem folgenden Symbol markiert:

s

...... Parameter nicht verfügbar für HYDROVAR SINGLE Inverter

Parameter, die automatisch übernommen werden, sind folgendermaßen gekennzeichnet:

G

...... Parameter werden automatisch an alle HYDROVAR die mit der RS485 Schnittstelle verbunden sind weitergegeben

Wichtig: Alle Änderungen werden automatisch gespeichert und bleiben auch im Falle eines Spannungsausfalles aktiv.

|--|--|

Die Anzeige der ersten beiden Parameter, SOLLWERT [02] und effektiver SOLLWERT [03] hängen von der gewählten Betriebsart [0105] ab. Der Unterschied zwischen den Anzeigen ist nachstehend erklärt:

<u>a) Betriebsart [0105] = Regler (Werkseinstellung)</u>

	ITT STOP	X.XX Hz X.XX Bar	1. Anzeigefenster bei Betriebsart Regler
--	-------------	---------------------	--

Zeigt den aktuellen Status des HYDROVAR

EIN	manuell und extern freigegeben	Stoppen des HYDROVAR mit ▼
STOP	manuell gestoppt	Starten des HYDROVAR mit 🔺
AUS	externe Freigabe (X3/7-8) geöffnet	Um den HYDROVAR zu starten, externen Kontakt schließen oder Brücke zwischen Klemmen X3/7-8

b) Betriebsart [0105] = Kaskade Relais / Kaskade Seriell / Kaskade Synchron:

* ADR X PX XX.X Hz	1. Anzeigefenster bei Betriebsart Kaskade	5
STOP X.XX Bar	Seriell/Synchron und Kaskade Relais	

Zeigt den aktuellen Status des HYDROVAR

* - zeigt den aktuellen Regel MASTER

ADR X	Pumpenadresse
РХ	Kaskade Relais: Zeigt wie viele Pumpen sich gerade in Betrieb befinden z.B.: P3MASTER sowie 2 starre Pumpen sind gerade in Betrieb Kaskade Seriell/ Zeigt die aktuelle Pumpenfolge – abhängig von Parametern Synchron: MASTER Priorität [0570] sowie FOLGEZEIT [0555]

EIN	manuell und extern freigegeben	Stoppen des HYDROVAR mit ▼
STOP	manuell gestoppt	Starten des HYDROVAR mit
AUS	externe Freigabe (X3/7-8) geöffnet	Um den HYDROVAR zu starten, externen Kontakt schließen oder Brücke zwischen Klemmen X3/7-8

<u>Gültig für Betriebsart – Regler / Kaskade Relais / Kaskade Seriell / Kaskade Synchron:</u>

02	02 SOLLWERT	Vorgabe des gewünschten	G
υz	D1 X.XX Bar	Sollwertes mit ▲ oder ▼	

Der aktuelle SOLLWERT sowie die zugehörige Quelle werden am Display angezeigt:

- D1 Interner Sollwert 1 (Vorgabe über Parameter 0820)
- D2 Interner Sollwert 2 (Vorgabe über Parameter 0825)
- U1 Sollwert 1 über Spannungssignal (Klemme X3/13)
- U2 Sollwert 2 über Spannungssignal (Klemme X3/15)
- Sollwert 1 über Stromsignal (Klemme X3/18) 11
- Sollwert 2 über Stromsignal (Klemme X3/23) 12

0.2	03 SW	EFFEKTIV
03	D1	X.XX Bar

Zeigt den aktuell berechneten Sollwert in Abhängigkeit der Parameter, ANHUBWERT [0505], ABSENKWERT [0510], sowie ANHUBINTENSITÄT [0330]. Bei Verwendung der Funktion OFFSET (SUBMENUE OFFSET [0900]) wird auch der aktuell berechnete Sollwert in Abhängigkeit des Offsetsignals in diesem Fenster angezeigt.

Bsp.: Mehrpumpenanlage – Anwendung mit 2 Pumpen

SOLLWERT [02]	5.00 bar
ANHUBWERT [0505]	0.50 bar
ABSENKWERT [0510]	0.25 bar
\rightarrow Sollwert EFF. [03]	5.25 bar

Nach Start der 2. Pumpe wird der Druck auf 5,25 bar angehoben. Mit Hilfe dieses Parameters ist es möglich den aktuell gültigen und verwendeten (intern berechneten) Sollwert abzulesen.

<u>c) Betriebsart [0105] = Stellerbetrieb</u>

	Frequenz XX.X Hz STOP X.XX Bar	1. Fenster in Betriebsart Steller	1. Fens
--	-----------------------------------	-----------------------------------	---------

Der Parameter SOLLWERT [02] ändert sich auf STELLFRQ. Und ist äquivalent zu Parameter [0830])

Mit diesem Parameter ist es möglich, den HYDROVAR mit bis zu zwei voreingestellten Frequenzen manuell zu betreiben.

02	02 STELLFRQ. D1 XX.X Hz	Auswahl erfolgt mit ▲ oder ▼
02	D1 XX.X Hz	

Die ausgewählte Frequenz in diesem Parameter ist nur im Stellerbetrieb aktiv. Die Einstellung erfolgt im Parameter KONFIG. SW1 [0805] bzw. KONFIG. SW2 [0810] und Parameter UMSCHALT SW [0815]. Für manuelles Vorselektieren einer oder mehrerer Stellfrequenzen können die Parameter STELLFREQUENZ 1 [0830] und STELLFREQUENZ 2 [0830] verwendet werden.

Mehr Informationen bzgl. der Einstellungen siehe Submenü SOLLWERTE [0800].

Parameter [03] wird im Stellerbetrieb nicht angezeigt!

04	04 START WERT AUS	Wiedereinschaltschwelle	G	
Mögliche Einstellungen: 0 % - 99% - AUS				1

Dieser Parameter definiert eine Wiedereinschaltschwelle nach automatischem Stopp (angegeben in Prozent vom Sollwert).

Bsp.:. SO	LLWERT [02]:	5.0 bar
ST/	ART WERT [04]:	80 %> 4 bar

Wenn der SOLLWERT von 5.0 bar erreicht ist und kein Verbrauch mehr vorhanden, schaltet der HYDROVAR die Pumpe ab.

Fällt bei erneutem Verbrauch der Druck, wird die Pumpe sofort gestartet.

Ist aber ein START WERT [04] von 4 bar programmiert, wird die Pumpe erst gestartet wenn der Systemdruck unter diese Wiedereinschaltschwelle von 4 bar gefallen ist.

Die folgenden Parameter im Hauptmenü sind für alle gewählten Betriebsarten aktiv:

05	05 SPRACHE DEUTSCH	Auswahl der Menüsprache
Auswahl mit ▲ oder ▼		

Die Parameter können in mehreren Sprachen angezeigt werden. Je nach Sprachblock können verschiedene Sprachen ausgewählt werden – siehe Kapitel 4.

Mit folgenden 2 Parametern können das aktuelle Datum sowie die Uhrzeit eingestellt werden (u.a. für Fehlerspeicher).

06	06 DATUM TT-MM-YYYY	Aktuelles Datum	8
		mit 🕨 (5 sek.) um Einstellung zu ändern	

drücken um ins SUBMENUE für Tag, Monat und Jahr zu kommen.

07	07 UHRZEIT HH:MM	Aktuelle Uhrzeit	5
		mit 🕨 (5 sek.) um Einstellung zu ändern	

drücken um ins SUBMENUE für Stunde und Minute zu kommen.

08 AUTO - START EIN Automatischer Start nach Spannungsunterbrechung G	;
--	---

Mögliche Einstellungen

EIN – AUS

Änderung EIN mit ▲ oder AUS mit ▼

EIN – automatischer Start nach Spannungsausfall oder automatischer Fehler Rücksetzung

AUS – kein automatischer Start, HYDROVAR muss manuell mit Taste gestartet werden

Nach erfolgreicher Fehlerbehebung oder Wiedereinschalten der Spannungsversorgung wird folgende Meldung angezeigt:

	ITT XX.X Hz STOP XX.X Bar	▲ drücken für Start
09	09 BETRIEBSSTD. 0000 h.	Betriebsstunden

Gezeigt werden die gesamten Betriebsstunden des HYDROVAR. Rücksetzung siehe Parameter RESET OP H. [1135].

20	20 SUBMENUE STATUS	Status aller Geräte in einer Pumpengruppe.
----	-----------------------	--

Ablesen des Status (inklusive Fehler und Motorbetriebsstunden) der Anlage.

24	21 STATUS		G
21	00000000	Status aller HYDROVAR bzw. Pumpen im System	8

Gibt einen Überblick über den einzelnen Betriebszustand aller HYDROVAR (Kaskade Seriell/Synchron) bzw. Pumpen (Kaskade Relais).

- Kaskade Seriell/Synchron: Status aller verbundenen (max. 8) HYDROVAR (1=EIN/ 0=AUS)
- Kaskade Relais (MASTER Inverter mit zusätzlicher Relaiskarte): Status der 5 Relais wird

gezeigt.

z.B.: Betriebsart – Kaskade Seriell

21 STATUS 11001000	HYDROVAR mit Adresse 1,2 und 5 sind in Betrieb.	G
11001000		

z.B.: Betriebsart – Kaskade Relais

	21 STATUS 10100	Relaiskontakte 1 und 3 sind geschlossen.	G
	i Ch	0	
22	22 AUSWAHL * 1 *	Auswahl der gewünschten Einheit.	8

Mögliche Einstellungen 01 – 08

Prüfen des aktuellen Status, der Motorstunden sowie des letzten Fehlers. Auswahl des gewünschten Gerätes mit \blacktriangle oder \blacktriangledown .

Die Auswahl ist grundsätzlich abhängig von der verwendeten Betriebsart [0105].

bei Betriebsart Kaskade – Seriell/Synchron:

Auswahl 01-08 bezieht sich auf die Adressen der einzelnen HYDROVAR Geräte.

z.B.: Auswahl 01 -> MASTER Inverter mit eingestellter Adresse 1

Auswahl 02 -> BASIC oder MASTER Inverter mit eingestellter Adresse 2 Auswahl 03 -> BASIC oder MASTER Inverter mit eingestellter Adresse 3

Einstellen der gewünschten Adresse am BASIC Inverter, siehe Kapitel Adressierung.

Einstellen der gewünschten Adresse am MASTER Inverter, siehe Parameter [0106] oder SUBMENUE [1200] RS485-Schnittstelle.

bei Betriebsart Kaskade Relais:

Auswahl	Zuordnung	verknüpf	ft mit	
01	MASTER Inverter			
02	starre Pumpe	Relais 1	X10 / 1	
03	starre Pumpe	Relais 2	X10 /2	
04	starre Pumpe	Relais 3	X10 /3	
05	starre Pumpe	Relais 4	X10 /4	
06	starre Pumpe	Relais 5	X10 /5	
07	Nicht verwendet		×	
08	Nicht verwendet			

23	23 STATUS Stop	Status des gewählten Gerätes	۶ G
Mögliche Anzeige:		Betriebsart Kaskade Relais: relais_ein, relais_aus	
		Betriebsart Kaskade Seriell/Synchron:	
		laeuft, gestoppt, gesperrt, AUS, preparing, solo run, fau	Ited

2

7

Zeigt den jeweiligen Status an.

bei Betriebsart Kaskade Relais:

relais_ein	->	Relais Kontakt geschlossen -> starre Pumpe läuft
relais aus	->	Relais Kontakt offen -> starre Pumpe gestoppt

Relais Kontakt offen -> starre Pumpe gestoppt ->

bei Betriebsart Kaskade Seriell / Synchron:

laeuft	->	HYDROVAR läuft
gestoppt	->	HYDROVAR ist gestoppt, weil kein Verbrauch
gesperrt	->	HYDROVAR ist gestoppt durch externen on/off (Kontakt offen),
		AUS Taste oder Parameter [24]
AUS	->	HYDROVAR nicht an Versorgungsspannung
		HYDROVAR nicht über RS485Schnittstelle verbunden
preparing	->	ein neuer HYDROVAR wurde ins System integriert – Daten werden
		gerade übernommen
solo run	->	der Notbetrieb wurde aktiviert über Klemmen (X1/SL)
faulted	->	ein Fehler wurde auf dem aktuellen HYDROVAR erkannt

24	24 AKTIVIEREN aktiv	Gewähltes Gerät aktiv oder gesperrt	<u></u> \$	
Mög	gliche Einstellungen:	aktiv - gesperrt		

Ausgewähltes Gerät kann hier manuell aktiviert oder gesperrt werden. (Sowohl in Betriebsart Kaskade Relais als auch Kaskade Seriell/Synchron möglich).

25	25 MOTOR STUNDEN
	XXXXX h

Gesamtlaufzeit des Motors sowie HYDROVAR. Rücksetzung siehe Parameter RESET MOT H. [1130].

Fehlerspeicher

Sämtliche Fehler, inklusive die des BASIC Inverters, können an jedem der MASTER Inverter angezeigt werden. Die Fehler werden hier gespeichert, inklusive Fehlercode, Beschreibung, Datum und Uhrzeit)

Für mehr Information, siehe Kapitel Fehlermeldungen

26	26 FEHLER 1 FEHLER XX	1. Fehler (aktuellster) des gewählten HYDROVARS	G
Anz	eige:	FEHLER XX, FEHLER TEXT, DATUM, UHRZEIT	
scro	llen mit ▲ oder ▼		
27	27 FEHLER 2 FEHLER XX	2. Fehler des gewählten HYDROVAR	G
Anz	eige:	FEHLER XX, FEHLER TEXT, DATUM; UHRZEIT	
scro	llen mit ▲ oder ▼		
28	28 FEHLER 3 FEHLER XX	3. Fehler des gewählten HYDROVAR	G
Anz	eige:	SFEHLER XX, FEHLER TEXT, DATUM, UHRZEIT	
scro	llen mit ▲ oder ▼		_
29	29 FEHLER 4 FEHLER XX	4. Fehler des gewählten HYDROVAR	G
Lesk	oar:	FEHLER XX, FEHLER TEXT, DATUM, UHRZEIT	
scro	llen mit ▲ oder ▼		
30	30 FEHLER 5 FEHLER XX	5. Fehler (ältester) des gewählten HYDROVAR	G
Lesk	oar:	FEHLER XX, FEHLER TEXT, DATUM, UHRZEIT	
scro	llen mit ▲ oder ▼		

40	SUBMENUE DIAGNOSE	
41	41 PROD. DATUM	Produktionsdatum des HYDROVAR (nur MASTER)

Mit folgenden Parametern können die aktuelle Temperatur, Spannung und Strom des gewählten HYDROVAR in Echtzeit angezeigt werden. Achtung: Diese Parameter können nur ausgelesen werden!

42	42 AUSWAHL 1	Auswahl des gewünschten HYDROVAR (Adresse)	G
Möc	liche Einstellungen:	1-8	

Dieser Wert zeigt momentane Temperatur im Inneren des Motors als Prozentwert der max. erlaubten Temperatur sowie als Absolutwert in °C.

43	43 TEMPERATUR XX % XX°C	Innentemperatur des gewählten HYDROVAR	G
44	44 STROMAUFN XXX %	Stromaufnahme des gewählten HYDROVAR	G

Dieser Wert zeigt die momentane Stromaufnahme des HYDROVAR als Prozentwert des max. Ausgangsstromes.

45	45 Spannung XXX V	Eingangsspannung des gewählten HYDROVAR	G	ļ
----	----------------------	---	---	---

Dieser Wert zeigt die momentan anliegende Eingangsspannung als Absolutwert in VAC.

46	46 Ausgangsfrequenz XX.X Hz	Ausgangsfrequenz des gewählten HYDROVAR	G
----	--------------------------------	---	---

Dieser Wert zeigt die momentane Ausgangsfrequenz als Absolutwert in Hz.

47	47 VER.INVERTER 01	Spezifikation des ausgewählten BASIC	G	J
----	-----------------------	--------------------------------------	---	---

Dieser Parameter zeigt die Informationen der Software des BASIC Inverters.

- 00 Alle HYDROVAR Geräte (Type HV2.015 4.110) vor Prod. Datum 05/2008
- 01 Baugröße 1 (HV 2.015 4.040) ab Software Steuerkarte V01.3
- 02 Baugröße 2 (HV 4.055 4.220) ab Software Steuerkarte V01.3

60

Vor Einstieg in das SUBMENUE muss diese Anleitung sorgfältig durchgelesen werden, um falsche Einstellungen sowie Fehlfunktionen des HYDROVAR zu verhindern.

Alle Parameter können während des Betriebes geändert werden. Verschiedene Parameter in einigen SUBMENUEs sollten aber nur von geschultem und qualifiziertem Personal verändert werden, da sich dies sofort auf das gesamte System auswirken könnte. Wir empfehlen daher: manuelles Stoppen des HYDROVAR mit ▼ im Hauptmenü während Einstellungen vorgenommen werden.

61	61 PASSWORT 0000	Eingabe des Passwortes (0066 = Werkseinstellung) mit ▲ oder ▼
----	---------------------	--

Achtung: Nach Eingabe des richtigen Passworts ist der Zugang zu folgenden Parameter für 10 min. möglich ohne das Passwort erneut einzugeben.

	61 PASSWORT 0066Bestätigen mit ► und das nächste Fenster wird bei erfolgreicher Eingabe gezeigt	
62	62 JOG 0.0Hz X.XX Bar	Aktuelle Frequenz und Istwert wird angezeigt.

- Mit ▲ oder ▼ in diesem Fenster: der interne Regler des HYDROVAR wird deaktiviert und die Drehzahl kann manuell verändert werden, somit kann jede konstante Drehzahl eingestellt werden, ohne Einfluss auf den Istwert des Regelsignals!
- Der HYDROVAR stoppt wenn der Wert 0.00 Hz eingestellt wird.

Nach verlassen des Fensters mit ◀ oder ►, wechselt der HYDROVAR wieder in die vorher eingestellte Betriebsart.

0100	0100 SUBMENUE GRUNDEINST.	

0105	0105 BETRIEBSART Reglerbetrieb	Auswahl der Betriebsart
------	-----------------------------------	-------------------------

Mögliche Einstellungen: Reglerbetrieb, Kaskade Relais / Seriell / Synchron, Stellerbetrieb

Reglerbetrieb (Werkseinstellung):

Auswahl für Einzelpumpenregelung, z.B.: ein HYDROVAR MASTER-Inverter oder SINGLE Inverter (keine Verbindung zu einem weiterem HYDROVAR über RS-485 Schnittstelle notwendig).

Kaskade Relais:

Anwendung: Ein HYDROVAR MASTER Inverter mit optionaler Relais Karte, um bis zu 5 starre Pumpen zu steuern.

(keine Verbindung zu einem weiterem HYDROVAR über RS-485 Schnittstelle möglich). Vorteil: kostengünstiges System

Nachteil: Regelgüte der Anlage, Ausfallssicherheit

Kaskade Seriell:

Anwendung: Mehrere HYDROVAR (entweder BASIC oder MASTER) arbeiten über die RS-485 Schnittstelle innerhalb eines Systems.

Mehrpumpen-Systeme ausgerüstet mit bis zu 8 Pumpen, jede mit HYDROVAR MASTER Inverter oder einer Kombination aus HYDROVAR MASTER und BASIC Inverter.

<u>Vorteile</u>: Betriebssicherheit (Redundanz), Umschaltung für Laufzeitoptimierung, automat. Umschalten im Fehlerfall

Kaskade Synchron:

Diese Betriebsart arbeitet gleichbedeutend der Betriebsart Kaskade Seriell. Der einzige Unterschied ist, dass alle benötigten Pumpen der Mehrpumpenanlage mit der gleichen Frequenz laufen.

Vorteil: Die Pumpen können effizienter betrieben werden

Stellerbetrieb: (Nur für Betrieb mit Einzelpumpen!)

Anwendung: in Verbindung mit einer externen Regelung bzw. Drehzahlvorgabe. In dieser Anwendung ist die interne HYDROVAR Regelung deaktiviert. Der HYDROVAR regelt nicht mehr auf den eingestellten Sollwert. Es wird lediglich ein definiertes Drehzahlsignal (über das Eingangssignal, welches proportional zur Drehzahl ist) zum Motor weitergegeben. Anschlussmöglichkeiten eines externen Drehzahlsignales:

5		
X3/13: Spannungssignal Eingang (Sollwert 1)	0-10V	0 - MAX.FREQ.[245]
X3/15: Spannungssignal Eingang (Sollwert 2)	0-10V	0 - MAX.FREQ.[245]
X3/18: Stromsignal Eingang (Sollwert 1)	4-20mA	0 - MAX.FREQ.[245]
	0-20mA	0 - MAX.FREQ.[245]
X3/23: Stromsignal Eingang (Sollwert 2)	4-20mA	0 - MAX.FREQ.[245]
	0-20mA	0 - MAX.FREQ.[245]

- Ein manuelles Umschalten zwischen den Referenzsignalen ist über definierte Digitaleingänge möglich.
- Die Frequenzänderung erfolgt anhand der programmierten Rampe 1 (Beschleunigung) und 2 (Bremsen).
- Die Funktion extern EIN/AUS bleibt trotzdem aktiv.
- "Motor Übertemperatur", "Wassermangel" und alle anderen internen Schutzfunktionen bleiben in Funktion.

Im Stellerbetrieb ist es auch möglich, den HYDROVAR mit zwei fix eingestellten Frequenzen zu betreiben.

Im Submenü SOLLWERT [0800] können diese verschiedenen Frequenzen eingestellt werden. Ein Wechsel zwischen den Frequenzen kann im Parameter UMSCHALT SW [0815] erfolgen.

|--|

Mögliche Einstellungen:

1-8

Einstellen der Adresse für MASTER Inverter und ▶ für ca. 5 sek. Drücken bis die folgende Meldung erscheint.

Adressierung	->	1220 PUMP ADDR.	oder	1220 PUMP ADDR.
Adressierung		* 1 *		- 1 -

Adressierung erfolgreich

erneut versuchen

Bei Verwendung von MASTER und BASIC Inverter gemeinsam in einem Mehrpumpen-System ist es notwendig, dass BASIC Inverter über eigene Adressen verfügen. Andernfalls kann eine korrekte Funktion des Systems nicht gewährleistet werden.

Für detaillierte Informationen siehe Kapitel Adressierung.

0110	0110 SET PASSW. 0066	Einstellen des Passwortes mit ▲ oder ▼
Möglig	he Finstellungen	0000-0000

Das voreingestellte Passwort (0066) kann geändert werden. Bei Änderung wird empfohlen, dieses zu notieren.

0115	0115 TASTENSP. AUS	Mögliche Einstellung mit ▲ oder ▼
Möglic	he Einstellungen:	EIN - AUS

AUS: Alle Parameter im Hauptmenü können ohne Passwort geändert werden.

EIN: Ist die TASTENSP. aktiv, können keine Änderungen in sämtlichen Parametern erfolgen. Der HYDROVAR kann durch die Tasten (▲ oder ▼) nur gestartet oder gestoppt werden. Um den Sollwert zu ändern muss die TASTENSP. auf AUS gesetzt werden.

0120	0120 KONTRAST 75 %	Display Kontrast
Mögliche Einstellungen:		10 – 100%

Für die Einstellung der Lesbarkeit des Displays abhängig von der Einbauposition.

Mögliche Einstellungen:10 – 100%Hier kann die Hintergrundbeleuchtung des Displays entsprechend eingestellt werden.

0200	0200 SUBMENUE KONFIG INVERTER	
0202	0202 SOFTWARE	Software Version der Steuerkarte

Wenn ein Remote Display angeschlossen wird, so erscheint auf diesem folgender Text:

0202	0202 SW RD V01.1 HV V01.3 (V01.4)	Software Version des Remote Displays (RD) und der Steuerkarte (HV)
0203	0203 SET VER.INV sel:00 act:00	Auswahl der SW Version am Leistungsteil
Mögliche Einstellungen:		00 - 02

Manuelle Auswahl (sel) und Anzeige (act) der möglichen .

Alle verfügbaren Version können nur ausgewählt werden, wenn BASIC Produktionsdatum >= 05/2008

Nach Auswahl der gewünschten Version mit (5 sek.) aktivieren. Am Display wird "DONE" angezeigt.

Bei Verwendung der Version 02 werden folgende Parameter hinzugefügt: [0285], [0286], [0290], [0291] (nur bei Geräten HV4.055 - HV4.220)

Die Aktivierung erfolgt nur, wenn alle BASIC Geräte den gleichen, ausgewählten Versionsstand haben, andernfalls wird automatisch die gemeinsame höchst mögliche aktiviert.

Version 00: alle Geräte mit Produktionsdatum vor 05/2008 Version 01: BASIC 1,5-4kW (basierend auf Software Steuerkarte V01.3 Version 02: BASIC 5,5-22kW (basierend auf Software Steuerkarte V01.3/V01.4

0205	0205 MAX.ANZAHL 01	Maximale Anzahl der Geräte	G S	
				ī
Möalia	he Finstellungen	01 - 08		

Auswahlmöglichkeit: Maximalanzahl der HYDROVAR bzw. Pumpen welche gleichzeitig in Betrieb sein dürfen.

<u>Zum Beispiel:</u>

Kaskade Seriell:

1 MASTER- und 2 BASIC Inverter im Mehrpumpensystem installiert

 \rightarrow sinnvolle Einstellung = 2...3

Kaskade Relais:

1 MASTER Inverter und 3 starre Pumpen

 \rightarrow sinnvolle Einstellung = 2...4

	0210 AUSWAHL	Auswahl des HYDROVAR (Adresse) zur	G
0210	ALLE	Parametrierung	5

Mögliche Einstellungen:

ALLE, 1-8

Sind HYDROVAR MASTER Inverter und BASIC Inverter über die RS-485 Schnittstelle verbunden, kann die Parametrierung der Werte im SUBMENU [200] über einen HYDROVAR MASTER erfolgen und wird von anderen HYDROVAR Geräten in dieser Gruppe übernommen.

Um nur einen speziellen HYDROVAR zu programmieren, kann nach Drücken der ► Taste für ca. 5 Sekunden die gewünschte Adresse (1-8) für die Parametrierung ausgewählt werden.

Mit der Einstellung "ALLE" werden alle Geräte der Gruppe angesprochen.

cht nethonger

Achtung: bei Zurückstellen auf "ALLE" werden wieder die vorherigen Einstellungen übernommen!

Die folgenden Parameter im Submenü 200 haben verschiedene Werkseinstellungen in Abhängigkeit zu den Baugrößen. Die Werkseinstellungen können in diesem Dokument zu den einzelnen Baugrößen abweichen. Alle Einstellungen im folgenden Menü beziehen sich auf die Baugröße bis 4kW (Baugröße 1) und können zu größeren Leistungen abweichen. Einstellungen der Rampen:

- Die Einstellung der Rampenzeiten beeinflusst die Regelung der Pumpe und sollte für Standardanwendungen nicht geändert werden.
- Die schnellen Rampen 1 und 2 sind abhängig von der Leistung des HYDROVAR und der Pumpentype. (Werkseinstellung = 4 sek.; bei Leistungen >4kW sollten diese bis 15 sek. verlängert werden, um Überlastabschaltungen zu verhindern)
- Die langsamen Rampen 3 und 4 bestimmen die Regelgeschwindigkeit bei kleinen Abweichungen oder konstantem Verbrauch und hängen daher vom System ab. (Werkseinstellung = 70 sek.)
- Die Rampen FminA und FminD werden während des Start/Stopp Vorganges verwendet. Diese Rampen ermöglichen einen sehr schnellen Hoch- sowie Tieflauf unterhalb der eingestellten MIN FREQUENZ [0250]. Dies gewährleistet sehr kurze Reaktionszeiten und verhindert das Überschreiten von max. erlaubten Laufzeiten unterhalb einer definierten Minimalfrequenz.

Einstellen der Rampen mit ▲ oder ▼

0215	0215 RAMPE 1 4.0 sek	Rampe 1: Schnelle Hochlaufzeit	G
Mögliche Einstellungen:		1 – 250 (1000) sek	

• Rampe 1 zu kurz: Fehler ÜBERLAST aufgrund zu hoher Stromaufnahme des Motors.

• Rampe 1 zu lang: Druckeinbrüche bei schnellen Verbrauchsänderungen.

0220	0220 RAMPE 2 4.0 sek	Rampe 2: Schnelle Tieflaufzeit	G
Möglic	che Einstellungen:	1 – 250 (1000) sek	

 Rampe 2 zu kurz: Fehler ÜBERSPANNUNG aufgrund von Spannungsinduktion des Motors.

• Rampe 2 zu lang: Überdruck bei schnellen Verbrauchsänderungen.

0225	0225 RAMPE 3 70 sek	Rampe 3: Langsame Hochlaufzeit	G	
				_
Möalia	he Finstellungen	1 – 1000 sek		

• Rampe 3 zu kurz: Schwingungen und/oder Störungen (ÜBERLAST / ÜBERSPANNUNG).

• Rampe 3 zu lang: Druckschwankungen während des Betriebes.

0230	0230 RAMPE 4 70 sek	Rampe 4: Langsame Tieflaufzeit	G	
Möalic	he Einstellungen:	1 – 1000 sek		1

- Rampe 3 zu kurz: Schwingungen und/oder Störungen (ÜBERLAST / ÜBERSPANNUNG).
- Rampe 3 zu lang: Druckschwankungen während des Betriebes.

0235	0235 R FMIN AUF 2,0 sek	Rampe Fmin Hochlauf	G
Möglic	he Einstellungen:	1.0 – 25.0 sek	

Entlang dieser Rampe wird der HYDROVAR bis zur ausgewählten MIN FREQUENZ [0250] gestartet. Darüber wird Rampe 1 [0215] aktiv.

• R FMIN AUF zu kurz: Fehler ÜBERLAST während des Startvorgangs. Dies kann auch aufgrund zu hoher Einstellung der MIN FREQUENZ [250] erfolgen – siehe [250]

0240	0240 R FMIN AB 2,0 sek	Rampe Fmin Tieflauf	G	

1.0 – 25.0 sek

Mögliche Einstellungen:

Entlang dieser Rampe wird der HYDROVAR sofort unter der MIN FREQUENZ [0250] gestoppt.

 R FMIN AB zu kurz: Fehler ÜBERSPANNUNG während des Stoppvorgangs. Dies kann auch aufgrund zu hoher Einstellung der MIN FREQUENZ [250] erfolgen – siehe [250]

0245	0245 MAX. FREQ. 50.0 Hz	Maximale Frequenz	G
Möglio	he Einstellungen:	30.0 – 70.0 Hz	

Dieser Parameter definiert die maximale Frequenz der Pumpe

Diese Einstellung ist abhängig von der Nennfrequenz des angeschlossenen Motors.

Einstellungen > 50 Hz können den Motor überlasten! Einstellungen von 10% über der Nennfrequenz haben eine Leistungserhöhung von 33% zur Folge!

0250	0250 MIN. FREQ. 25.0 Hz	Minimal	Frequenz	
				_

Mögliche Einstellungen:

0.0 – fmax (0,0 – 30,0 wenn [0203] ist 00 (Werkseinstellung)

Unterhalb der Minimal Frequenz arbeitet der HYDROVAR mit den schnellen Rampen [0235/0240].

Die Werkseinstellung ermöglicht nur eine Einstellung bis 30Hz. Um die MIN. FREQ. erhöhen zu können muss der Parameter [0203] auf 01 oder 02 geändert werden. Für mehr Informationen siehe Seite 64.

Die Minimalfrequenz ist je nach Pumpentype und Anwendung einzustellen. Speziell bei Tauchmotorpumpen muss eine Minimalfrequenz von ~30Hz gewählt werden. Bei zu hohen Werten MIN. FREQ. und zu kurz eingestellten Rampen RFMIN AUF und RFMIN AB kann es aufgrund des erforderlichen Drehmoments bzw. der Schwungmasse (abhängig von der Motorleistung sowie Pumpenkennlinie) zu Fehlerabschaltungen beim Hoch- und Tieflauf kommen.

0255	0255 KONFIG. FMIN f -> 0	Betriebsverhalten bei Minimalfrequenz	G
Möglio	che Einstellungen:	f->0 oder f->f _{min}	

f->0: Nach Erreichen des Solldruckes und Verbrauch 0, fällt die Frequenz auf die ausgewählte MIN FREQUENZ [0250] und der HYDROVAR stoppt automatisch nach Ablauf der eingestellten ZEIT FMIN [0260].

f->**f**_{min}: HYDROVAR stoppt nicht automatisch. Nachdem die eingestellte MIN FREQUENZ [0250] erreicht wird, bleibt der HYDROVAR auf dieser Drehzahl (solange Verbrauch nicht ansteigt) und kann nur manuell über den externen EIN/AUS oder durch ▼ gestoppt werden.

Anwendung Umwälzanlagen, geschlossene Systeme

von $f->f_{min}$ Die Einstellung f->fmin kann die Pumpe überhitzen, wenn kein Durchfluss gewährleistet wird. => Bypass für Umwälzanlagen notwendig!

0260	0260 ZEIT FMIN 0 sek	Verzögerungszeit zum Abschalten unter Min Frequenz.	G
Möglic	he Einstellungen:	0 – 100 sek 🛛 📉	

Nachlaufen der Pumpe für diese ausgewählte Zeit bei Minimal Frequenz; aktiv wenn Parameter KONFIG. FMIN [0255] auf f -> 0 eingestellt ist.

<u>Achtung:</u> Probleme beim Abschalten der Pumpe bei 0 Verbrauch (zu kleiner oder kein Membranspeicher) können gelöst werden, da der Systemdruck während dieser Verzögerungszeit etwas angehoben wird.

0265	0265 BOOST 5.0 %	5	Einstelle angesch	n d los	der Motorstartspannung in % der ssenen Versorgungsspannung.	G	
			· · · · · · · · · · · · · · · · · · ·				
				(. N			

Mögliche Einstellungen:

0 – 25% der maximalen Eingangsspannung

Dieser Parameter bestimmt die Charakteristik des Spannung/Frequenz Verlaufes bei geringen Drehzahlen.

Der Wert ist abhängig von der Spannungserhöhung während der Motorstartphase in Prozent der Nennspannung. Einstellungen sollten so niedrig wie möglich sein, damit die thermische Überlastung des Motors bei geringen Drehzahlen verhindert wird.

Ist der Boost zu niedrig kann eine Störung (Überlast) auftreten, da der Anlaufstrom zu hoch ist.

0270	0270 KNIE FREQ. 50 Hz	Knie Frequenz	G	
Mögliche Einstellungen:		30.0 – 90.0 Hz		

Einstellen der Frequenz bei der der HYDROVAR die maximale Ausgangsspannung liefert (nur für spezielle Anwendungen!). Für Standard Anwendungen sollte diese Frequenz gleich der MAX. FRQ. [0245] (Werkseinstellung 50Hz) eingestellt werden.

Warnung: Dieser Parameter ist nur für spezielle Anforderungen! Falsche Einstellungen können einen Überlastfehler verursachen und zur Zerstörung des Motors führen.

0275 LEIST. RED Reduzierung des maximalen Au AUS

Mögliche Einstellungen:

AUS, 85%, 75%, 50%

Wird ein Motor mit kleinerer Nennleistung verwendet, sollte der maximale Ausgangsstrom entsprechend reduziert werden.

Die Reduzierung des maximalen Ausgangsstromes beeinflusst die Überlastabschaltung!

HV Type	Ausgangsstrom [A]							
	AUS = 100%	85%	75%	50%				
2.015	7	5,95	5,25	3,5				
2.022	10	8,50	7,50	5,00				
4.022	5,7	4,85	4,28	2,85				
4.033	7,3	6,21	5,48 🔹	3,65				
4.040	9	7,65	6,75 🗡	4,5				
4.055	13,5	11,48	10,13	6,75				
4.075	17	14,45	12,75	8,5				
4.110	23	19,55	17,25	11,5				
4.150	30	24,00	22,50	15,00				
4.185	37	29,60	27,75	18,50				
4.220	43	34,40	32,25	21,50				

0280 TAKTFREQ. 0280

Auto

Auswahl der Schaltfrequenz (Taktfrequenz)

G

Mögliche Einstellungen:

Auto, 8 kHz, 4 kHz

Auto (Werkseinstellung)

Im Normalbetrieb arbeitet der HYDROVAR bei einer Taktfrequenz von 8kHz um die Geräuschentwicklung am Motor gering zu halten. Bei steigender Temperatur im HYDROVAR wird die Taktfrequenz automatisch auf 4kHz reduziert, um die Verluste im HV zu reduzieren.

- 8kHz fixe Einstellung, kein Absenken bei erhöhter Temperatur.
- 4kHz fixe Einstellung, geringere Wärmeverluste im HYDROVAR.

0285	0285 SPERRFRQ C. 0,0 Hz	Sperrfrequenz Schwellwert
Mögliche Einstellungen: f _{mir}		f _{min} - f _{max}
0286	0286 SPERRFRQ R. 0,0 Hz	Sperrfrequenz Bereich
Mögliche Einstellungen:		0,0 – 5,0 Hz
0290	0290 STROMBEGR. AUS	Strombegrenzung ein-/ ausschalten
Mögliche Einstellungen:		AUS - EIN
0291	0291 STROMBEGR. 100 %	Strombegrenzung
Mögliche Einstellungen:		10,0 - 100 %

Die Strombegrenzung wird immer vom Nennstrom aus gerechnet. Wenn der HYDROVAR in den Bereich der Strombegrenzung kommt, wird am Display STROMBEGR. Angezeigt und der HYDROVAR versucht durch Reduzierung der Ausgangsfrequenz wieder außerhalb der Strombegrenzung zu kommen.

<u>Achtung:</u> Bei eingeschalteter Strombegrenzung ist unbedingt ein Motor PTC zu verwenden!

Die Parameter [0285] – [0291] sind nur für HYDROVAR ab einer Baugröße von 5,5kW mit dem Produktionsdatum 05/08 und einer Softwareversion der Steuerkarte ab V01.3. Sind diese Bedingungen nicht erfüllt, werden diese Menüpunkte nicht angezeigt.
0300	0300 SUBMENUE REGLER		
0305	0305 JOG X.XX Bar	0.0Hz	Ausgangsfrequenz und Istwert wird angezeigt.

- Mit ▲ oder ▼ in diesem Fenster: der interne Regler des HYDROVAR wird deaktiviert und die Drehzahl kann manuell verändert werden, somit kann jede konstante Drehzahl eingestellt werden, ohne Einfluss auf den Istwert des Regelsignals!
- Der HYDROVAR stoppt wenn der Wert 0.00 Hz eingestellt wird.

Verlassen des Fensters mit ◀ oder ►, der HYDROVAR wechselt wieder in die vorher eingestellte Betriebsart.

0310	0310 FENSTER 5 %	Regelfenster	G
Möglic	he Einstellungen:	0 – 100% des Sollwertes	

- Definiert die Schwellwerte, wo zwischen langsamen Rampen (3,4) und schnellen Rampen (1,2) gewechselt wird.
- für steile Pumpenkurven und geschlossene Systeme ~20-30%

0315	0315 HYSTERESE 80%	Schwellwert innerhalb des Fensters	G
	X		
Möglic	he Einstellungen:	0 – 100%	

- Definiert die Schwelle/Bereich, wo entlang den langsamen Rampen gearbeitet wird (z.B. bei konstantem Verbrauchszustand).
- Für genaue Regelungen (ohne automatischer Abschaltung) ~99% z.B. konstante Durchflussregelung

0320	0320 REGLER VERH. normal	Verhalten des Reglers in Abhängigkeit des Istwertsignales	G
Möglic	he Einstellungen:	normal, invers	

normal: Frequenz steigt mit fallendem Istwert. (z.B.: Regelung nach konstantem Ausgangsdruck)

invers: Frequenz fällt mit fallendem Istwert. (z.B.: Regelung nach konstanten Eingangsdruck oder konstantem Niveau saugseitig)

0325	0325 ANHUBFREQ 30.0 Hz	Frequenzschwelle für Sollwerterhöhung	G	
Möglic	he Einstellungen:	0.0 Hz – 70.0 Hz		

Anwendung: Regelung nach Anlagenkennlinie (Erhöhung des Solldruckes in Abhängigkeit von Durchflussmenge/Drehzahl um Rohrreibungsverluste zu kompensieren).

Dieser Wert bestimmt ab welcher Ausgangsfrequenz der erforderliche Solldruck erhöht werden soll. Er sollte der Ausgangsfrequenz entsprechen, bei welcher die Pumpe bei Verbrauch 0 den eingestellten Solldruck erreicht. (Kann im JOG ermittelt werden).

0330	0330 ANHUBINTENS 0.0 %	Intensität zur Sollwerterhöhung	G
Möglic	he Einstellungen:	0.0 – 200.0%	

Dieser Wert gibt die prozentuelle Anhebung des Sollwertes bis zum Erreichen der eingestellten Maximaldrehzahl (Maximalmenge) an.

Beispiel:

1) 2) 3)	Solldruck einstellen (siehe Hauptmenü) Frequenz bei der die Pumpe den eingestellten Solldruck bei Menge=0 erreicht (siehe Jog Betriebsart) und Eingabe des Wertes in Parameter ANHUBFREQ. [0325] Eingeben der gewünschten Erhöhung des Druckes bei maximaler Drehzahl in % des Sollwertes, in Parameter ANHUBINTENS [0330].	H A	f=100%
	A Solldruck B Fenster C Anhubintensität in % des Solldruckes		2 1 0 Q

0400 SUBMENUE SENSOREN

In diesem Untermenü können sämtliche Einstellungen für verwendete Istwertsensoren vorgenommen werden.

Grundsätzlich können nur Sensoren desselben Typs verwendet werden (entweder Sensoren mit Stromsignal oder Spannungssignal), da die jeweiligen Grundeinstellungen für beide Sensoren gelten.

0405	0405 MASSEINHEIT Bar	Einheit für Anzeige

Mögliche Einstellungen: bar, psi, m³/h, g/min, mH2O, ft, °C, °F, l/sec, l/min, m/sec, ..., %

Einstellen der Einheit mit \blacktriangle oder \blacktriangledown .

Bei einer Änderung der MASSEINHEIT, muss auch der Wert im Parameter MAX. SKAL. [0420] angepasst werden (entsprechend der MASSEINHEIT!)

0410	0410 SENSOR KONF Sensor 1	Auswahl des Sens	ors	\$
Möglic	the Einstellungen: - Sensor 1 - Schalt Dig1	- Sensor 2 - Schalt Dig2	- Auto - Schalt Dig3	- Schalt Dig4
	- Reg. Min.Wert	- Reg. Max.Wert	- Reg. Differenz	

Dieser Parameter ermöglicht die Auswahl der einzelnen Sensoren und bestimmt, wie die einzelnen Sensoren verwendet werden und welcher aktiv ist.

Bei Verwendung von 2 Sensoren kann beispielsweise die Differenz der beiden Messsignale ermittelt werden oder aber auch ein automatisches Umschalten im Falle eines Fehlers definiert werden.

Sensor 1	Sensor 1 ist immer aktiv 0/4-20mA Signal an Klemme X3/2 und X3/3 (+24V) 0-10V Signal an Klemme X3/6 und X3/3 (+24V)
Sensor 2	Sensor 2 ist immer aktiv 0/4-20mA Signal an Klemme X3/4 und X3/3 (+24V) 0-10V Signal an Klemme X3/5 und X3/3 (+24V)
Auto	Automatisches Umschalten im Falle eines Fehlers von Sensor 1
Schalt Dig1	Manuelles Umschalten durch Schließen v. Digital Eingang 1 (X3/9-10)
Schalt Dig2	Manuelles Umschalten durch Schließen v. Digital Eingang 2 (X3/6-GND)
Schalt Dig3	Manuelles Umschalten durch Schließen v. Digital Eingang 3 (X3/5-GND)
Schalt Dig4	Manuelles Umschalten durch Schließen v. Digital Eingang 4 (X3/15-GND)
Reg. Min.Wert	Der Sensor mit dem kleineren Istwert (oder verfügbarer Sensor im Fehlerfall) wird für die Regelung herangezogen.
Reg. Max.Wert	Der Sensor mit dem höheren Istwert (oder verfügbarer Sensor im Fehlerfall) wird für die Regelung herangezogen.
Reg. Differenz	Istwert = Differenz aus beiden Sensoren

0415	0415 SIGNAL TYP 4 – 20mA	Auswahl der Signalart

Mögliche Einstellungen: - analog I 4-20mA - analog I 0-20mA - analog U 0-10V

In Abhängigkeit des verwendeten Sensors (Ausgangssignal), muss hier die richtige Einstellung vorgenommen werden.

Sensor Typ:		Klemmen:
- analog I 4-20mA - analog I 0-20mA	Stromausgangssignal des verwendeten Sensors – an folgenden Klemmen:	X3/2 -> Sensor 1 * X3/4 -> Sensor 2
- analog U 0-10V	Spannungsausgangssignal des verwendeten Sensors – an folgenden Klemmen:	X3/6 -> Sensor 1 * X3/5 -> Sensor 2

* ... Sensor 2 ist für den HYDROVAR SINGLE Inverter nicht verfügbar

0420	0420 MAX. SKAL 20mA = 10.00 Bar	Maximale Skalierung	G
Möalia	che Einstellungen:	0.00 - 10000	

Bestimmt den Messbereichsendwert (=20mA oder 10V) des/der verwendeten Sensors/Sensoren.

<u>Beispiele:</u>

Drucktransmitter 10 bar	= > 20mA = 10bar
Differenzdrucktransmitter 0.4 bar	=> 20mA = 0.4 bar
Durchflussmesser (Durchfluss = 36m ³ /h)	$=> 20 \text{mA} = 36 \text{m}^3/\text{h}$

0425	0425 SENS. KENNL. linear	Einstellen der Sensorkennlinie
Möaliche Einstellungen:		linear, quadratisch

Interne Kalkulationen basieren am gemessenen Istwert. Mögliche Einstellungen und Anwendungen:

- **linear:** Druckregelung, Differenzdruckregelung, Niveau, Temperatur und Durchflussregelung (Induktive oder Mechanisch).
- quadratisch: einfache Mengenregelung über Messblende und Differenzdrucktransmitter.

Mögliche Einstellungen: - 10% bis +10% des Istwerts

Einstellen des Nullpunktes von Sensor 1.

Nach der Konfiguration der MASSEINHEIT und MAX. SKAL, kann der Nullpunkt des Sensors adjustiert werden. Einstellbar zwischen - 10% bis +10% des Istwerts.

0435	0435 SENS 1 KAL X 0% = xx.xx bar	Sensor 1 Max. Wert Kalibrierung
Mögliche Einstellungen:		- 10% bis +10% der Istwerts

Einstellen des Messbereichsendwert von Sensor 1.

Nach der Konfiguration der MASSEINHEIT und MAX. SKAL, kann der Messbereichsendwert des Sensors adjustiert werden. Einstellbar zwischen -10 und +10% der Istwerts.

C-01-

0440	0440 SENS2 KAL 0 0% = xx.xx bar	Sensor 2 Nullpunkt Kalibrierung	8
Möali	che Finstellungen:	- 10% bis + 10% des Istwerts	
mogn			
Nullpu	nkt Kalibrierung für Sensor 2	, siehe Parameter 0430.	
0445	0445 SENS2 KAL X 0% = xx.xx bar	Sensor 2 Max. Messbereichs Kalibrierung	S
Möalia	he Finstellungen:	- 10% bis +10% des Istwerts	

Max. Messbereichs Kalibrierung für Sensor 2, siehe Parameter 0435.

0500 SUBMENUE FOLGE REGELUNG

0500

Alle notwendigen Parameter zur Konfiguration von Mehrpumpenanlagen (sowohl Betriebsart Kaskade Relais als auch Kaskade Seriell/Synchron) sind in diesem Untermenü zu finden.

Beispiel zur Programmierung eines Mehrpumpensystems:

- 1) Führungspumpe erreicht die FREIGABEFRQ. [0515]
- 2) Istwert fällt und ereicht den Startwert der 1. Folgepumpe Startwert= SOLLWERT [02] – ABSENKWERT [0510]
 → Erste Folgepumpe startet automatisch
- 3) Nach dem Zuschalten der 1. Folgepumpe errechnet sich der neue Sollwert wie folgt: Neuer SOLLWERT = SOLLWERT [02] – ABSENKWERT [0510]. + ANHUBWERT [0505] Dieser intern berechnete Sollwert kann im Hauptmenü im Parameter SW EFFEKTIV [03] abgelesen werden.

Kalkulation des neuen Sollwertes für Mehrpumpenanwendungen:

- k ... Anzahl der aktiven Pumpen (k > 1)
- $p = p_{set} + (k-1)^{*}[Anhubwert Absenkwert]$
- Anhubwert = Absenkwert ⇒ Ausgangsdruck konstant unabhängig davon wie viele Pumpen arbeiten
- Anhubwert > Absenkwert \Rightarrow **Ausgangsdruck steigt** bei Pumpenzuschaltung
- Anhubwert < Absenkwert \Rightarrow **Ausgangsdruck fällt** bei Pumpenzuschaltung

Die folgenden 3 Parameter bestimmen die Zuschaltung einzelner Folgepumpen sowie die Neukalkulation des Sollwertes.

0505	0505 ANHUBWERT 0.35 Bar	Anhubwert	G S	
Möglic	he Einstellungen:	0.00 – bis zum eingestellten Sensormessbereich		
				1
0510	0510 ABSENKWERT 0.15 BAR	Absenkwert	G S	
Mögliche Einstellungen:		0.00– bis zum eingestellten Sensormessbereich	.	1
				1
0515	0515 FREIGABEFRQ. 48.0 Hz	Freigabefrequenz für die Zuschaltung einer Folgepumpe	G S	
Mögliche Einstellungen:		0.0 – 70.0 Hz	<u> </u>	

Einstellen der gewünschten Freigabefrequenz der Folgepumpen. Wird diese Frequenz erreicht und der Systemdruck fällt unter den Wert SOLLWERT [02] - ABSENKWERT [0510], wird die nächste Pumpe zugeschaltet.

0520	0520 FREIG. VI 5 sek	ERZ	Ve (N	erzögerung Iur für Kas	für Zuschaltur skade Relais!)	ng
Möalic	he Finstellungen [.]		0	– 100 sek		
mogile	ine Emstendingen.		V			

Wenn alle notwendigen Bedingungen erfüllt sind, wird eine der starren Folgepumpen nach dieser Verzögerungszeit gestartet.

0525	0525 SCHALTVERZ. 5 sek	Schaltverzögerung (Nur für Kaskade Relais!)	5
Mögliche Einstellungen:		0 – 100 sek	

Verzögerungszeit zwischen zwei Schaltvorgängen von starren Folgepumpen. Dieser Parameter schützt das System gegen wiederholte Schaltvorgänge, welche durch stark variierenden Verbrauch ausgelöst werden könnten.

0530	0530 ABSCHALTFRQ 30 Hz	Abschaltfrequenz (Nur für Kaskade Relais!)	\$
Mögliche Einstellungen:		0.0 – 120.0 Hz	

Einstellen der Abschaltfrequenz für starre Pumpen bei Betriebsart Kaskade Relais. Wenn der MASTER Inverter diese Frequenz für den Zeitraum der gewählten ABSCH. VERZ [0535] unterschreitet sowie der Systemdruck höher als SW EFFEKTIV [03] (SOLLWERT [02] + ANHUBWERT [0505]) ist, wird eine starre Folgepumpe gestoppt.

05350535ABSCH. VERZ 5 sekAbschaltverzögerungszeit (Nur für Kaskade Relais!)	0535
---	------

Mögliche Einstellungen:

0 – 100 sek

Verzögerungszeit zur Abschaltung einer starren Folgepumpe.

0540	0540 DROP FREQ 42 Hz	Drop Frequenz (Nur für Kaskade Relais!)	5
Möglic	he Einstellungen:	0.0 – 70.0 Hz	

Dient zur Vermeidung von Druckschlägen. Bevor eine Folgepumpe startet fällt der MASTER Inverter auf diese eingestellte DROP FREQUENZ ab. Nach dem Zuschalten der starren Folgepumpe arbeitet die Regelung des MASTER Inverters im Normalbetrieb weiter.

0545	0545 MAX.WERT AUS	Maximaler Wert (Nur für Kaskade Relais!)	
Möglic	he Einstellungen:	AUS – bis zum eingestellten Sensormessbereich	

Ist der eingestellte Wert erreicht, erfolgt ein sofortiger Stopp der einzelnen Folgepumpen.

Z.B. SOLLWERT [02]: 5.00 bar MAX. WERT [0545]: 7.50 bar

Wird beim Betrieb von mehreren Pumpen (z.B.: 1 MASTER Inverter + 2 Folgepumpe) ein Systemdruck von 7.50 bar erreicht, schaltet eine Folgepumpe nach der anderen ab (je nach Einstellung des Parameters MAXWERT VERZ [0550]) bis dieser "kritische Wert" wieder unterschritten wird.

Dieser Parameter schützt das System gegen Überdruck, falls z.B. der HYDROVAR nicht korrekt parametriert ist.

0550	0550 MAXWERT VZR 0 sek	Maximal Wert Verzögerung	5
Möglic	che Einstellungen:	0.0 – 10.0 sek	

Verzögerungszeit um Folgepumpen abzuschalten, falls der Istwert den MAX WERT [0545] überschritten hat.

0555	0555 FOLGE ZEIT 24 Stunden	Folgezeit (Umschaltintervall) für zyklische Umreihung (Nur für Kaskade Seriell/Synchron!)	G S
Möglic	he Einstellungen:	0 – 250 Stunden	

Dieser Parameter erlaubt eine automatische Weitergabe der Führungspumpe, um eine gleichmäßige Auslastung der einzelnen Pumpen zu erreichen.

Die FOLGE ZEIT ist nur zwischen HYDROVAR MASTER Invertern gültig. (verbunden über die RS-485 Schnittstelle).

Synchronregelung:

Alle Pumpen im System werden mit gleicher Frequenz betrieben.

Die 2. Pumpe startet, wenn die Führungspumpe die FREIGABEFRQ. [0515] erreicht und der Systemdruck unter den eingestellten ABSENKWERT [0510] fällt -> beide Pumpen laufen mit synchroner Drehzahl.

Die Folgepumpe stoppt, wenn die Frequenz unter das eingestellte SYNCHR. LIMIT [0560] fällt. Diese beiden Parameter gewährleisten entsprechende Schwellwerte, um ein ständiges Zu- und Abschalten der einzelnen Folgepumpen bei variierendem Verbrauch zu verhindern.

Ermitteln der richtigen Werte:

- Verbrauch = $0 \rightarrow$ Hauptschieber schließen.
- Eine Pumpe mit JOG Betriebsart [62] manuell starten. Erhöhung der Frequenz bis der Solldruck erreicht ist. Ablesen der Frequenz ($= f_0$) bei Nullverbrauch
- Einstellen des Synchronlimits (f₀ + 2..3 Hz)
- Einstellen des Synchronfensters zwischen 1 oder 2 Hz (abhängig von Pumpenkennlinie und Sollwert).

0560	0560 SYNCHR.LIM. 0.0 Hz	Abschaltfrequenz bei Synchronregelung	G S	
	·		-	4
Möalio	che Einstellungen:	0 .0 Hz - Max. Frequenz		

Abschalten der ersten Folgepumpe bei Synchron Regelung.

Wenn diese Frequenz beider Pumpen unterschritten wird, schaltet die erste Folgepumpe ab.

0565	0565 SYNCHR.HYST.		
0505	2.0 Hz	Frequenzschwelle für Synchron Regelung	8
			r
Möali	che Finstellungen [.]	0 0 – 10 Hz	

Frequenzschwelle für das Abschalten der nächsten Folgepumpe.

z.B. Abschalten der 3. Pumpe:

Alle 3 Pumpen laufen mit Frequenz < SYNCHR. LIM. [0560] + SYNCHR.HYST. [0565]

oder: Abschalten der 4. Pumpe:

Alle 4 Pumpen laufen mit der Frequenz < SYNCHR. LIM. [0560] + 2x SYNCHR.HYST. [0565]

0570	0570 MST. PRIOR. EIN	Priorität der MASTER bei Zu- / Abschaltung (Nur für Kaskade Seriell/Synchron!)	G
			V-
Mögliche Einstellungen:		EIN - AUS	

Bestimmt die Schaltfolge (Zu- und Abschaltung) wenn MASTER und BASIC Inverter gemeinsam verwendet werden. In diesem Fall muss ausgewählt werden ob zuerst die einzelnen MASTER oder BASIC Inverter zugeschaltet werden.

- **EIN** Alle MASTER Inverter im System müssen in Betrieb sein (außer er ist durch einen Fehler oder manuell gestoppt), bevor der erste BASIC Inverter freigegeben wird.
- Beispiel: Adresse 1-3 MASTER Inverter Adresse 4-8 BASIC Inverter

Schaltfolge:	Adr 1	Adr 2	Adr 3	Adr 4	Adr 5	Adr 6	Adr 7	Adr 8
	MASTER	MASTER	MASTER	BASIC	BASIC	BASIC	BASIC	BASIC

AUS- Ein MASTER arbeitet (dieser ist verantwortlich für die Regelung nach dem Sollwert). Bei steigendem Verbrauch werden alle BASIC Inverter freigegeben, bevor ein weiterer MASTER Inverter zuschaltet.

Schaltfolge:	Adr 1	Adr 4	Adr 5	Adr 6	Adr 7	Adr 8	Adr 2	Adr 3
	MASTER	BASIC	BASIC	BASIC	BASIC	BASIC	MASTER	MASTER
		0		2				
		\mathbf{O}						
			0,					
	$\langle 0 \rangle$							
7	7							

0600	0600 SUBMENUE FEHLER	
0605	0605 FOERDERSCHW deaktiviert	Förderschwellen Limit
Möglic	he Einstellungen:	deaktiviert - bis zum eingestellten Sensormessbereich

- Ein eingestellter Wert >0.00 muss innerhalb der VERZ. ZEIT [0610] erreicht werden.
- Wird dieser Wert nicht überschritten, stoppt der HYDROVAR mit Fehlermeldung "FÖRDERSCHWELLE".
- Deaktivieren: Mit ▼ bis "deaktiviert" am Display erscheint.

0610	0610 VERZ. ZEIT 2 sek	Verzögerungszeit für Förderschwelle/ externer Wassermangelschutz	G
Möglio	he Einstellungen:	0 – 100 sek	

Verzögerungszeit um den HYDROVAR abzuschalten, falls der Istwert den Wert der FOERDERSCHW. [0605] erreicht oder ein angeschlossener externer Wassermangelschutz (Klemmen X3/11-12) ausgelöst hat.

Achtung: Diese Schutzfunktion ist auch während des Hochlaufs der Pumpe aktiv! Daher muss diese Verzögerungszeit länger sein als die Pumpe auch im Normalbetrieb benötigt, diesen eingestellten Wert (FOERDERSCHW [0605] zu überschreiten.

0615	0615 FEHLERRESET EIN	Automatischer Fehler Reset	G	
Möglic	he Einstellungen:	EIN – AUS		

EIN: Erlaubt einen 5-maligen Neustart im Fehlerfall. Ist dieser Fehler nach dem 5ten Neustart noch immer vorhanden, schaltet der HYDROVAR mit der entsprechenden Fehlermeldung ab.

Der interne Zähler der automatischen Quittierung wird nach jeder Betriebsstunde um 1 reduziert, d.h. wenn ein Fehler nach 3 Neustarts quittiert werden konnte, sind 3 Neustarts nach einer Stunde, 4 nach zwei Stunden und 5 automatische Neustarts nach 3 Betriebsstunden wieder möglich.

Ein manuelles Rücksetzen kann durch betätigen eines externen EIN/AUS Kontaktes (X3/7-8) durchgeführt werden.

Anmerkung: Nicht jeder Fehler kann automatisch zurückgesetzt werden. (Für detaillierte Informationen siehe Kapitel Fehlermeldungen)

AUS: Automatische Fehlerrücksetzung nicht aktiv: jeder Fehler wird sofort am Display angezeigt und der HYDROVAR stoppt – kann nur manuell zurückgesetzt werden.

0700	А	0700 SUBMENUE USGAENGE				
0705	C	705 ANALOG AUS1 Ausgangsfrequenz	Analog Ausgang 1	8		
Analog Möglic	g Aus che Ei	gang 0 – 10V = 0 - 100 nstellungen: - Istwert ,	% Kle / Ausgangsfrequenz (0 - fn	emme: X3/20 nax)		
0710		0710 ANALOG AUS2 Istwert	Analog Ausgang 2	\$		
Möglic	che Ei	nstellungen:	Istwert, Ausgangsfreq	uenz		
Analog Ausgang 4 – 20mA = 0 - 100% Klemme: X3/21 Mögliche Einstellungen: - Istwert / Ausgangsfrequenz (0 - fmax)						
0715	215 0715 REL1 KONFIG Laeuft		Konfiguration des Status Relais 1 (X5/1-2-3)			
0720	720 0720 REL2 KONFIG Fehler		Konfiguration des Status Relais 2 (X5/4-5-6)			
Möglic	che Ei	nstellungen: Power, Feh Warnun <mark>ge</mark>	ler, Warnungen, StandBy, n+BASIC	Fehlerresets, Fehler Basic,		
Konf	ig.	Funktion	Statusrelais	Aktion, wenn Status = JA		
Pow	ver	HYDROVAR ist an Ve	rsorgung angeschlossen	Relais 1: X5/ 1-3 geschlossen Relais 2: X5/ 4-6 geschlossen		
Laeu	uft	Mot	or läuft	Relais 1: X5/ 1-3 geschlossen Relais 2: X5/ 4-6 geschlossen		
Fehl	er	Fehleranzeige	am HYDROVAR	Relais 1: X5/ 1-2 geschlossen Relais 2: X5/ 4-5 geschlossen		
Warnu	ung	Anzeige einer Warnung am HYDROVAR		Relais 1: X5/ 1-2 geschlossen Relais 2: X5/ 4-5 geschlossen		
Stanc	dBy	Pumpe ist über ext. Freigabe sowie manuell By freigegeben, kein Fehler / Warnung wird am HYDROVAR angezeigt und Pumpe läuft nicht		Relais 1: X5/ 1-3 geschlossen Relais 2: X5/ 4-6 geschlossen		
Fehle	er-	Wenn Parameter FEHL	ERRESET [0615] aktiv und	Relais 1: X5/ 1-3 geschlossen		
rese	ets	Warnung wird 5 mal	angezeigt -> Fehler ->	Relais 2: X5/ 4-6 geschlossen		
Basi	ei ic	aufo	etreten	Relais 2: X5/ 4-6 geschlossen		
Warnu +Bas	ung sic	Eine Warnung an eine oder BASIC)	em HYDROVAR (MASTER ist aufgetreten	Relais 1: X5/ 1-3 geschlossen Relais 2: X5/ 4-6 geschlossen		

Beide Status-Relais können verwendet werden um den aktuellen Status des HYDROVAR anzuzeigen.

0800	0800 SUBMENUE	
	JOLEWEITE	

Die Umschaltung zwischen 1. und 2. Sollwert kann entweder intern oder auch extern über die Digitaleingänge erfolgen. Mit den folgenden Parametern kann die Quelle des Sollwertes sowie das Umschalten konfiguriert werden.

0805	0805 KONFIG. SW1 Digital	Konfiguration Sollwer	rt 1	\$
Mögliche Einstellungen:		- digital - analog I 0-20mA	- analog U 0-10V - analog I 4-20mA	

digital	Interner Sollwert 1 (Standardeinstellung) wird verwendet. Einstellung im Hauptmenü mit Parameter 02 oder Parameter 0820.			
analog U=0 – 10V	V Sollwert 1 wird vorgegeben durch ein externes Spannungssigna 10V) - angeschlossen an Klemmen X3/13- X3/14 (GND).			
analog I=0 – 20mA	Sollwert 1 wird vorgegeben durch ein externes Stromsignal (4 – 20mA oder 0 – 20mA) angeschlossen an Klemmen X3/18- X3/17 (GND).			
analog I=4 – 20mA	<u>Achtung:</u> Fällt der Wert des Signals unter 4mA (bei 4-20mA), wird eine Warnung am Display angezeigt. Ist der Fehler nach 20 Sekunden nach wie vor vorhanden wird eine Fehlermeldung angezeigt.			

0810	0810 KONFIG. SW 2 AUS	Konfigura	tion Sollwert	2
Mögliche Einstellungen:		- AUS	- digital	- analog U 0-10V
		- analog I	0-20mA	- analog I 4-20mA

AUS	Sollwert 2 wird nicht verwendet.	
digital	Interner Sollwert 2 wird verwendet. Einstellung im Hauptmenü mit Parameter 02 oder Parameter 082	5.
analog U 0 – 10V	Sollwert 2 wird vorgegeben durch ein externes Spannungssignal (0-10V) - angeschlossen an Klemmen X3/15- X3/16 (GND).	\$
analog I 0 – 20mA	Sollwert 2 wird vorgegeben durch ein externes Stromsignal (4 – 20mA oder 0 – 20mA) angeschlossen an Klemmen X3/23- X3/22 (GND).	\$
analog I 4 – 20mA	<u>Achtung:</u> Fällt der Wert des Signals unter 4mA (bei 4-20mA), wird eine Warnung am Display angezeigt. Ist der Fehler nach 20 Sekunden nach wie vor vorhanden wird eine Fehlermeldung angezeigt.	

0815	0815 UMSCHALT SW Sollwert 1	Umschalten zwis	schen Sollwert 1 und 2	\$
Mögliche Einstellungen:		- Sollwert 1 - Schalt Dig1 - Schalt Dig3	- Sollwert 2 - Schalt Dig2 - Schalt Dig4	

Sollwert 1: Nur Sollwert 1 ist aktiv (keine Umschaltmöglichkeit)
Sollwert 2: Nur Sollwert 2 ist aktiv (keine Umschaltmöglichkeit)
Schalt Dig1: Manuelles umschalten durch Schließen von Digitaleingang 1 (X3/9-10)
Schalt Dig2: Manuelles umschalten durch Schließen von Digitaleingang 2 (X3/6-10)
Schalt Dig3: Manuelles umschalten durch Schließen von Digitaleingang 3 (X3/5-10)
Schalt Dig4: Manuelles umschalten durch Schließen von Digitaleingang 4 (X3/15-16)

0820	0820 SOLLWERT 1 XX.X Bar	Sollwert 1 (Digital)
Möglic	he Einstellungen:	0.0 – bis zum eingestellten Sensormessbereich
0825	0825 SOLLWERT 2 XX.X Bar	Sollwert 2 (Digital)
Mögliche Einstellungen:		0.0 – bis zum eingestellten Sensormessbereich

Einstellen des Sollwertes mit ▲ oder ▼.

Dieser vorgewählte Sollwert ist bei den Betriebsarten Reglerbetrieb, Kaskade Relais und Kaskade Seriell aktiv, wenn im Parameter KONFIG. SW 1 [0805] oder KONFIG. SW 2 [0810] "Digital" sowie im Parameter UMSCHALT SW. [0815] "Sollwert 1/2" eingestellt wurde oder über einen Digitaleingang aktiviert wird.

0830	0830 STELLFREQ 1 XX.X Hz	Sollfrequenz 1 für Steller
Möglic	he Einstellungen:	0.0 – MAX. FREQ. [0245]
0835 STELLFREQ 2 XX.X Hz		Sollfrequenz 2 für Steller
Möalic	he Einstellungen:	0.0 – MAX, FREO, [0245]

Einstellen der Frequenz mit ▲ oder ▼

Die ausgewählte Frequenz in diesem Parameter ist nur in der Betriebsart Stellerbetrieb aktiv wenn im Parameter KONFIG. SW 1 [0805] oder KONFIG. SW 2 [0810] "digital" sowie im Parameter UMSCHALT SW [0815] "Sollwert 1/2" eingestellt oder der Parameter STELLFREQ 1/2 über einen Digitaleingang ausgewählt ist.

0900	0900 SUBMENUE OFFSET	5

Alle Analogeingänge auf der Klemmleiste X3/13-24 können als auch als Offseteingang verwendet werden. Diese Funktionen erlaubt eine zusätzliche Kalkulation des Sollwertes in Abhängigkeit des angeschlossenen Signalwerts sowie den folgenden Einstellungen.

0905	0905 OFFSET SIG. AUS		IG.	Auswahl des Eingangs für OFFSET Funktion	\$
Mögliche Einstellungen: AUS, A Analog			AUS, A Analog	nalog U1 0-10V, Analog U2 0-10V g I1 0-20mA / 4-20mA, Analog I2 0-20mA / 4-20mA	
_					

AUS	Offset nicht aktiv
Analog U 1	Offsetwert wird anhand des Spannungssignales (0 – 10V) kalkuliert,
0-10V	angeschlossen an Klemmen X3/13 (SOLLWERT 1)- X3/14 (Masse).
Analog U 2	Offsetwert wird anhand des Spannungssignales (0 – 10V) kalkuliert,
0-10V	angeschlossen an Klemmen X3/15 (SOLLWERT 2)- X3/16 (Masse)
Analog I 1	Offsetwert wird anhand des Stromsignales (0/4 – 20mA) kalkuliert,
0/4 – 20mA *	angeschlossen an Klemmen X3/18 (SOLLWERT 1) - X3/17 (Masse).
Analog I 2	Offsetwert wird anhand des Stromsignales (0/4 – 20mA) kalkuliert,
0/4 – 20mA *	angeschlossen an Klemmen X3/23 (SOLLWERT 2) - X3/22 (Masse).

• <u>Achtung:</u> Fällt der Wert des Signals unter 4mA, wird eine Warnung am Display angezeigt. Ist der Fehler nach 20 Sekunden nach wie vor vorhanden wird eine Fehlermeldung angezeigt.

0907	0907 OFFSET RANGE		Repräsentation des Sensorendwerts
Möglic	he Einstellungen:	(0 – 10000

Die Offset Range kann zwischen 0 und 10000 eingestellt werden und definiert den Sensorendwert. Einstellungen werden im folgenden Beispiel veranschaulicht. z.B.: 16 bar Sensor kann eingestellt werden als: 16, 160, 1600

Eine höhere Offset Range erlaubt gleichzeitig eine höhere Auflösung bzw. Genauigkeit.

0910	0910 LEVEL 1 0	Startwert als Absolutwert	\$
Möglic	he Einstellungen:	0 – Offset Range	
0912	0912 OFFSET X1 0	Offset Signalwert	S
Mögliche Einstellungen:		0 – Level 1	

Angabe auf der X- Achse als Absolutwert

0913	0913 OFFSET Y1 0,00 bar	Sollwert des Sensors	8
Mögliche Einstellungen:		0 – Istwertsensor Messbereich	

Sollwertsignal; Angabe der Y- Koordinate als Absolutwert

0915	0915 LEVEL 2 100	Startwert als Absolutwert	\$
Möglic	che Einstellungen:	Level 1 – Offset Range	
0917	0917 OFFSET X2 100	Offset Signalwert	8
Möglic	Mögliche Einstellungen: Level 2 – Offset range		

Angabe auf der X- Achse als Absolutwert

0918	0918 OFFSET Y2 0,00 bar	Sollwert des Sensors	S
Mögliche Einstellungen:		0 – Istwertsensor Messbereich	

Sollwertsignal; Angabe der Y- Koordinate als Absolutwert

Beispiel zur Verwendung der Funktion OFFSET

Konstanter Druck mit einem Sollwert von 5 bar. Zusätzlich ist ein Signal eines Durchflusssensors an den Offset Eingang angeschlossen. Parameter 907 – Offset Range = 160 (Endwert des Durchflusssensors = 16m³/h)

Anforderung 1:

Konstanter Druck von 5 bar bei einer Durchflussmenge zwischen 5m³/h und 12m³/h Wenn der Durchfluss unter 5m³/h fällt, soll der Druck so reduziert werden, dass dieser bei einem Durchfluß von 2m³/h einen Wert von 2,5 bar nicht überschreitet.

Einstellungen:

Parameter [0910] – Level 1 = $50 = 5m^3/h$ Parameter [0912] – Offset X1 = $20 = 2m^3/h$ Parameter [0913] – Offset Y1 = 2,5 = 2,5 bar

Anforderung 2:

Konstanter Druck von 5 bar bei einer Durchflussmenge zwischen 5m³/h und 12m³/h Wenn der Durchfluss über 12m³/h ansteigt, soll der Druck so erhöht werden das bei einem Maximaldurchfluss von 16m³/h ein Druck von 6,0 bar erreicht wird.

Einstellungen:

Parameter [0915] – Level 2 = $120 = 12m^{3}/h$ Parameter [0917] – Offset X2 = $160 = 16m^{3}/h$ Parameter [0917] – Offset Y2 = 6 = 6,0 bar

1000	1000 SUBMENUE TESTLAUF		
1005	1005 TESTLAUF nach 100 Std.	Automatischer Testlauf	G

Mögliche Einstellungen: AUS – 100 Std.

Der automatische Testlauf gewährleistet einen kurzen Anlauf der Pumpe nach einer eingestellten Stillstandszeit (kalkuliert nach dem letzten Stopp) um die Pumpe vor mechanischem Blockieren zu schützen.

Testlauf Zeit, Frequenz und Boost können ausgewählt werden. 🛛 🛬

Deaktivieren des automatischen Testlaufes: durch Drücken von **V** bis "AUS" angezeigt wird.

Der Testlauf ist nur aktiv wenn die Pumpe gestoppt ist, sowie externer EIN/AUS Kontakt(X3/7-8) geschlossen, und die Pumpe manuell freigegeben ist.

_ (

1010	1010 TESTL. FREQ. 30.0 Hz	Frequenz für manuellen und automatischen G Testlauf	
Möglic	he Einstellungen:	0 – Fmax	
	X		
1015	1015 TESTL. BOOST 10.0 %.	Einstellung der Motorstartspannung in % der G Eingangsspannung.	
Möglic	he Einstellungen:	0 – 25% der max. Eingangsspannung ist möglich.	
	$ \ldots \cup $		
1020	1020 TESTL. VERZ 5 sek	Testlauf Zeit	
Möglic	he Einstellungen:	0-180 sek.	
1025	1025 AUSWAHL 01	Auswahl des Umrichters für manuellen Testlauf	
Mögliche Einstellungen:		01-08	
1030	1030 TESTL MAN. Drücke ► 3sek.	Manueller Testlauf, Testlauf für ausgewähltes Gerät bestätigen.	
Möglic	Mögliche Einstellungen:		

Es ist möglich einen manuellen Testlauf für eine ausgewählte Pumpe zu starten. (Auch für starre Pumpen im Kaskade Relais Modus kann ein man. Testlauf durchgeführt werden.) Durch drücken von ▶ für mindestens 3 Sekunden wird ein manueller Testlauf gestartet.

1100	1100 SUBMENUE SETUP	
1110	1110 DEFAULT SET Europe	Zurücksetzen des HYDROVAR auf Werkseinstellungen
Mögliche Einstellungen:		Europe, USA

Um den HYDROVAR auf Werkseinstellungen wählen Sie 0 für Europa oder 1 für USA. Zum Auswählen drücken Sie ► für 5 sek. bis "DONE" am Display erscheint.

1120	1120 PASSWORT 2 0000	Einstellung mit 🛦 oder
------	-------------------------	------------------------

Die untenstehenden Parameter können nur nach Eingabe des Passwortes 2 verwendet werden!

Für weitere Informationen wenden Sie sich an ihren Kundendienst!

1125	1125 FEHL LOESCH Drücke ► 5 sek.	Löschen des Fehlerspeichers der ausgewählten oder aller HYDROVAR (Kaskade Seriell/Synchron)
------	-------------------------------------	---

Mögliche Einstellungen:

1 – 8, ALLE

Das Löschen des Fehlerspeichers von nur einer speziellen Adresse (1-8) oder aller HYDROVAR kann ausgewählt werden. Löschen: Drücken von ► bis "RESET" erscheint.

1130	1130 RESET MOT H Drücke ► 5 sek.	Löschen der Motorstunden des ausgewählten oder aller HYDROVAR (Kaskade Seriell/Synchron)
Mögliche Einstellungen:		1 – 8, ALLE

Löschen der Motorstunden von nur einer speziellen Adresse (1-8) oder aller HYDROVAR (Kaskade Seriell/Synchron) kann ausgewählt werden.

Löschen: Drücken von ► bis "RESET" erscheint.

1135	1135 RESET OP H. Drücke ► 5 sek.	Rücksetzen der Betriebsstunden
------	-------------------------------------	--------------------------------

Die Betriebsstunden geben die Zeit an, die der HYDROVAR insgesamt an die Spannungsversorgung angeschlossen wurde.

Löschen: Drücken von ► bis "RESET" erscheint.

1200 SUBMENUE 1200 RS485- SCHNITTSTELLE

User Schnittstelle

Die folgenden 3 Parameter konfigurieren die Kommunikation zwischen HYDROVAR und externen Geräten (z.B. SPS) über das standardisierte Modbus - Protokoll. Einstellen der Adresse, Baudrate und Format erfolgt aufgrund der Systemanforderungen.

1205	1205 ADRESSE 1	Adresse für User Schnittstelle
Möglic	he Einstellungen:	1 - 247
1210	1210 BAUDRATE 9600	Baudrate für User Schnittstelle
Mögliche Einstellungen:		1200, 2400, 4800, 9600, 14400, 19200, 38400
1215	1215 FORMAT RTU N81	Format für User Schnittstelle
Mögliche Einstellungen:		RTU N81, RTU N82, RTU E81, RTU O81, ASCII N72, ASCII E71, ASCII O71

Interne Schnittstelle:

Sind mehrere HYDROVAR MASTER Inverter über die interne RS-485 Schnittstelle verbunden (max. 8 / im Kaskade Seriell Modus) muss jedem Gerät eine eigene Adresse zugeordnet werden (1-8).

Jede Adresse darf nur einmal verwendet werden!

	1220 044							s
1220	1 1 1			Adresse für MASTER Inverter				
Mögliche Einstellungen: 1-8								
Einstellen der Adresse für MASTER Inverter und ▶für ca. 5 sek. Drücken bis die folgende								
Meldung erscheint.								
Adressierung _> 1220) PUMP A	DDR.	oder	1220 PUMP ADDR.			
Ad	ressierung			* 1 *			- 1 -	
A			Adressi	erung erf	olgreich		Adressierung fehlgeschlage	n –

Bei Verwendung von MASTER und BASIC Inverter gemeinsam in einem Mehrpumpen-System ist es notwendig, dass die BASIC Inverter separate Adressen haben. Andernfalls kann eine korrekte Funktion des Systems nicht garantiert werden.

erneut versuchen

Für detaillierte Informationen siehe Kapitel Adressierung.

11 Fehlermeldungen

HYDROVAR und Motor bleiben unter Spannung, auch wenn der HYDROVAR durch einen Fehler stoppt.

Vor Beginn jeder Arbeit am elektrischen oder mechanischen Teil der gesamten Anlage muss die Anlage so gesichert werden, dass es zu keiner unerwünschten Wiedereinschaltung kommen kann.

Unterschied zwischen Warnung und Fehler:

- Warnungen werden am Display und durch die rote LED angezeigt aber der HYDROVAR wird unter umständen nicht gestoppt. (abhängig von verschiedenen Warnmeldungen). Ist eine Warnung aktiv und die Fehlerursache wird nicht binnen 20 Sekunden behoben, wird ein Fehler angezeigt.
- Fehler werden am HYDROVAR über das Display (MASTER/SINGLE Inverter) sowie durch eine rote LED angezeigt und stoppen den Motor sofort. Die Fehlerursache (Klartext) wird am Display angezeigt und im Fehler-Speicher (inklusive Datum und Uhrzeit des Fehlers) abgelegt.

Die nachstehenden Punkte beschreiben die einzelnen Fehler, welche am HYDROVAR angezeigt werden können (MASTER und BASIC-Inverter). Weiters sind mögliche Fehlerbehebungen beschrieben.

- Ein Automatischer FEHLERRESET kann einen auftretenden Fehler bis zu 5-mal zurücksetzen.
 Für mehr Information zu dieser Funktion, siehe Parameter FEHLERRESET [0615].
- Alle Fehler und Warnungen können über die beiden Relais an den Klemmen X5/1-2-3 oder X5/4-5-6 ausgegeben werden, abhängig von der Konfiguration. (Siehe: Parameter REL1 KONFIG 1 [0715] und REL2 KONFIG [0720])

11.1 BASIC Inverter

Wird der HYDROVAR in Konfiguration BASIC Inverter verwendet, werden die folgenden Fehler durch einen Fehler Code über die rote LED angezeigt:

roter LED Code	Fehler	Beschreibung
1x blinken	UNTERSPANNUNG	Versorgungsspannung ist zu gering
2x blinken	ÜBERLAST / ÜBERSTROM	Ausgangsstrom zu hoch oder Leistungsgrenze des HYDROVAR ist erreichte
3x blinken	Übertemperatur im HYDROVAR	Zu hohe Temperatur im HYDROVAR
4x blinken	ÜBERSPANNUNG	Zwischenkreisspannung ist zu hoch.
5x blinken		Interner Fehler
6x blinken	Motor Übertemperatur Externer Kontakt	PTC hat die Auslösetemperatur erreicht, oder externer Kontakt ist offen.

Zurücksetzen:	Fehlerbehebung für "CODE Fehler" und "ÜBERLAST" ausschließlich durch Unterbrechung der Spannungsversorgung > 60 Sekunden möglich. Zurücksetzen aller anderen Fehler durch Öffnen/Schließen des
Zurücksetzen.	Zurücksetzen aller anderen Fehler durch Öffnen/Schließen des START/STOP_PTC Einganges (X1/PTC) am Leistungsteil.

BASIC Inverter in Verbindung mit einem MASTER Inverter:

S.

Jeder Fehler am BASIC Inverter kann auch am MASTER Inverter angezeigt werden und wird im zugehörigen Fehlerspeicher inklusive Datum und Uhrzeit abgelegt.

FEHL. BASIC ADR. X	Anzeige (Einstellung) am MASTER Inverter: Für detaillierte Information an dem defekten Gerät siehe SUBMENUE STATUS [20]
--------------------	---

Wird ein MASTER Inverter verwendet, ist es möglich den Fehler zurückzusetzen ohne die Funktion der anderen HYDROVAR zu unterbrechen. (gilt auch für automatischen Fehler- RESET)

11.2 MASTER Inverter/ SINGLE Inverter

Jeder Fehler wird am Display angezeigt und im Fehlerspeicher abgelegt. Die Fehler können automatisch zurückgesetzt werden, anhängig von den Einstellungen im Parameter FEHLERRESET [0615], oder manuell auf verschiedene Arten:

- Unterbrechen der Spannungsversorgung > 60 Sekunden
- Drücken von ◀ und ► gleichzeitig für länger als 5 Sekunden.
- Schalten des externen EIN/AUS Kontakts (Klemmen X3/7-8)

keine Störmeldung					
Problem / Störung	Wahrscheinliche Ursache	Maßnahme / Behebung			
Kein automatischer Anlauf nach Spannungsausfall	Parameter AUTOSTART [08] ist deaktiviert (AUS)	Überprüfen von Parameter AUTOSTART [08]			
Kein Betrieb obwohl Istwert < Sollwert	Einschaltschwelle wurde noch nicht erreicht, REGELVERHALTEN ist nicht auf NORMAL eingestellt.	Überprüfen der Parameter START WERT [04] und REGELVERHALTEN [0320]			

Störmeldung am Display				
Problem / Störung	Wahrscheinliche Ursache	Maßnahme / Behehung		

		•
ÜBERSTROM FEHLER 11	zu hoher Stromanstieg innerhalb kurzer Zeit am Ausgang	 Prüfe Verbindungsklemmen am HYDROVAR Prüfe Verbindungsklemmen am Motor und Motorkabel Prüfe Wicklungen des Motors

Problem / Störung	Wahrscheinliche Ursache	Maßnahme / Behebung
UEBERLAST FEHLER 12	Leistungsgrenze des HYDROVAR überschritten	 Prüfen des Parameters RAMPE 1/2 [0215/0220] (zu kurz) und BOOST [0265] (zu niedrig) RFMIN AUF / AB [240/245] bei verwendeter MIN FREQ [250] zu kurz Prüfen des Motoranschlusses (Stern/Dreieck) sowie Kabel Pumpe blockiert Motor läuft vor dem Betrieb rückwärts (defektes Rückschlagventil) unzulässiger Betriebspunkt oder Parameter MAX. FREQ. [0245] zu hoch Prüfen des Parameters BOOST [0265]
UEBERSPANNUNG FEHLER 13	Gleichspannung im HYDROVAR zu hoch	 Parameter RAMPE 2 [0220] zu kurz RFMIN AB [245] bei verwendeter MIN FREQ [250] zu kurz Netzspannung zu hoch Spannungsspitzen durch Schalten von großen Lasten am Netz. (Gegenmaßnahme: Netzfilter, Netzdrossel, RC - Elemente) Motor läuft vor dem Betrieb rückwärts (defektes Rückschlagventil)
UEBERTEMP. INV FEHLER 14	Übertemperatur im HYDROVAR	 unzureichende Kühlung Kühlkörper verschmutzt Umgebungstemperatur zu hoch
THERMO MOT/EXT (EXTERNER KONTAKT) FEHLER 15	Eine externe Schutzeinrichtung verbunden zu Klemme X1/PTC hat ausgelöst. (z.B. der angeschlossene PTC hat seine Auslösetemperatur erreicht.)	 X1/PTC kurzschließen falls keine externer Schutzeinrichtung vorhanden ist Schließen des externen EIN/AUS Schalter wenn diese Klemmen verbunden sind. Für detaillierte Informationen siehe Kapitel Leistungsteil.
PHASENAUSFALL FEHLER 16	Eine Phase der Spannungsversorgung ist nicht mehr verfügbar -> automatische Leistungsreduktion (nur für Geräte HV4.055-4.220)	 Überprüfung der Spannungsversorgung (unter Volllast) – auf Phasenausfall am Eingang Schutzeinrichtungen überprüfen Sichtkontrolle an den Eingangsklemmen
UNTERSPANNUNG	Gleichspannung im HYDROVAR zu niedrig	Netzspannung zu niedrigfehlende Phase am EingangPhasenunsymmetrie

COMM LOST	Die Kommunikation zwischen dem Leistungsteil und der Steuerkarte funktioniert nicht fehlerfrei	 Überprüfen der Adressierung am BASIC Inverter (Dip Schalter) Jeder HYDROVAR eigene Adresse? Verbindungskabel zwischen Steuerkarte und BASIC Inverter überprüfen Unterschiedliche Betriebsart einzelner HYDROVAR innerhalb einer Pumpengruppe eingestellt 	
	Unterbrechung der Span	nungsversorgung > 60 Sekunden	
	 Drücken von 🚽 und 🕨 gleichzeitig für länger als 5 Sekunden. 		

Zurücksetzen:	 Schalten des externen EIN/AUS Kontakts (Klemmen X3/7-8)
	Auto-Reset möglich wenn FEHLER-RESET [0615] aktiviert wurde

		•	Zulaufdruck oder Niveau zu gering
	Der Wassermangelkontakt	•	X3/11-12, kurzschließen falls kein
	(X3/11-12) ist geöffnet		externer Wassermangelschutz
FERLER 21			vorhanden ist.
	(nur aktiv bei Motorlauf)	•	Parameter VERZ. ZEIT [0610] einstellen wenn nur kurzzeitigen Abschaltungen.

	automatisch wenn Wassermangelkontakt (X3/11-12) geschlossen
Zurücksetzen:	wird.

FÖRDERSCHWELLE FEHLER 22	Der eingestellte Wert von Parameter FÖRDERSCHWELLE [0605] wurde nicht während der eingestellten Verzögerungszeit erreicht	 System überprüfen, eingestellter Parameter VERZ. ZEIT [0610] Parameter FEHLER RESET auf EIN stellen um automatisches Rücksetzen zu aktivieren (z.B. bei leerem System)
FEHLER SENSOR 1 ACT. VAL. SENSOR 1 FEHLER 23	Sensor Signal an Klemmen X3/2 <4mA <u>Aktiver Sensor:</u> WARNUNG (20 sek.)-> Fehler <u>Nicht-aktiver Sensor</u> -> WARNUNG	 Istwertsignal (Drucktransmitter) nicht vorhanden Falscher Anschluss Sensor oder Kabelfehler Prüfe Einstellung des Sensors in Submenü SENSORS [0400]
FEHLER SENSOR 2 ACT. VAL. SENSOR 2 FEHLER 24	Sensor Signal an Klemmen X3/4 <4mA <u>Aktiver Sensor:</u> WARNUNG (20 sek.)-> Fehler <u>Nicht-aktiver Sensor</u> -> WARNUNG	 Istwertsignal (Drucktransmitter) nicht vorhanden Falscher Anschluss Sensor oder Kabelfehler Einstellung des Sensors prüfen in Submenü SENSORS [0400]

SETPOINT 1 I<4mA FEHLER 25	Stromsignaleingang für Sollwert ist aktive, aber kein Signal 4-20mA ist verbunden WARNUNG (20 sek.)-> Fehler	 Externes Signal prüfen an den Klemmen X3/17-18 Einstellung des Sollwertes prüfen in Submenü SOLLWERT [0800]
SETPOINT 2 I<4mA FEHLER 26	Stromsignaleingang für Sollwert ist aktiv, aber kein Signal 4-20mA ist verbunden WARNUNG (20 sek.)-> Fehler	 Externes Signal prüfen an den Klemmen X3/22-23 Einstellung des Sollwertes prüfen in Submenü SOLLWERT [0800]
Zurücksetzen:	 O Unterbrechung der Span Orücken von ◄ und ► g O Schalten des externen Ell Auto-Reset möglich wenn Fl 	nungsversorgung > 60 Sekunden leichzeitig für länger als 5 Sekunden. N/AUS Kontakts (Klemmen X3/7-8) EHLER-RESET [0615] aktiviert wurde

11.3 Interne Fehler

Unterbrechung der Spannungsversorgung > 60 Sekunden. Bei mehrmaligem Auftreten setzen Sie sich mit dem Kundendienst in Verbindung.

• •

Interne Fehler Fehlermeldungen am Display - rote LED (Ein/on)		
FEHLER 1	EEPROM-Fehler (Fehlfunktion eines Datenblocks)	Bei wiederholtem Auftreten nach dem Zurücksetzen ⇒ Steuerkarte tauschen
FEHLER 4	Tastenfehler	Tastenfunktion überprüfen bzw. Displayplatine defekt
FEHLER 5	EPROM-Fehler	Bei wiederholtem auftreten nach dem Zurücksetzen \Rightarrow Steuerkarte tauschen
FEHLER 6	Programm Fehler: Watchdog Fehler	Bei wiederholtem auftreten nach dem Zurücksetzen \Rightarrow Steuerkarte tauschen
FEHLER 7	Programm Fehler: fehlerhafte Quarzfrequenz	Bei wiederholtem Auftreten nach dem Zurücksetzen ⇒ Steuerkarte tauschen
CODE ERROR	Programm Fehler: Ungültiger Prozessorbefehl	 Installation der Kabel prüfen, Verbindung des Schirms und Potentialausgleich Prüfen der Erd/Masseverbindungen Zusätzliche Filter für Signalkabel (z.B. Ferrite) verwenden

<u>Beispiele:</u>

Drucksteigerung	
Problem: HYDROVAR schaltet nicht ab	
Kontrolle	Abhilfe
 Verbrauch druckseitig vorhanden 	 Verbraucher bzw. Leitungen überprüfen
 Rückschlagventil hält nicht dicht 	 Rückschlagventil wechseln
 Vordruck im Ausgleichsbehälter nicht ordnungsgemäß eingestellt 	 Einstellung laut Diagramm erforderlich FENSTER [0310] (ca.10%) und
Regelverhalten zu klein eingestellt	HYSTERESE [0315] (80-50%) einstellen • RAMPE 2 [0220] auf 415 sek, einstellen
Abschaltrampe zu langsam eingestellt	• MINIMUM FREQUENZ [0250] aktivieren für
Saugleitung zu lange	Druckanhebung bei 0 Verbrauch

Regelung auf konstante Menge		
Problem: Regelung schwankt		
Kontrolle	Abhilfe	
	 FENSTER [0310] vergrößern 	
Regelverhalten zu klein eingestellt	HYSTERESE [0315] auf 99% erhöhen um	
	Regelung mit RAMPE 3 und 4 zu erreichen	

Umwälzanlage	
Problem: Dauerndes Schwingen hörbar 🔾	
Kontrolle	Abhilfe
Regelverhalten zu schnell eingestellt	 RAMPE 3 [0225] und 4 [0230] auf 100200sek einstellen FENSTER [0310] (ca.20%) und HYSTERESE [0315] (ca.99%)
Problem: ISTWERT wird nicht genau gehalter	n
Kontrolle	Abhilfe
HYSTERESE zu groß eingestellt	HYSTERESE [0315]: 90-99%

	Allgemein
Problem:	Istwertsignal (Druckmessung etc.) schwankt – Analogsignal nicht konstant
Abhilfe:	 Überprüfung der Kabelverlegung und der Anschlüsse des Schirms Prüfe Erdverbindung bei Transmitterkabel
	geschirmte Kabeln verwenden

12 Wartung

Der HYDROVAR benötigt keine spezielle Wartung. Jedoch sollten fallweise Kühlkörper und Kühlrippen des Motors von Staub befreit werden und die Umgebungstemperatur kontrolliert werden.

Reparaturen am HYDROVAR oder an der Anlage dürfen nur von autorisiertem Fachpersonal oder durch Fachpersonal des Herstellers durchgeführt werden. Für die Montage und Reparaturen stehen auf Anforderung geschulte Kundendienst-

Monteure zur Verfügung.

Demontage:

Vor Beginn der Demontage muss die Anlage so gesichert werden, dass es zu keiner unerwünschten Einschaltung kommen kann.

Beachten Sie die Pumpen- und Motor- Betriebsanleitung. Verwenden Sie die entsprechende Schutzausrüstung.

Für weitere Information wenden Sie sich an Ihren Kundendienst!

13 Menüübersicht

HĂNY AG behảit sich das Recht vor, jederzeit und ohne vorherige Ankündigung an Geräten Änderungen vorzunehmen.

V 2009/09A-V01.3 / V01.4 771079411 Handbuch HV 2.015-4.220

Häny AG - Pumpen, Turbinen und SystemeHäny SA - Pompes, turbines et systèmesHäny SA - Pompe, turbine e sistemiBuechstrasse 20 • CH-8645 Jona • Tel. +41 44 925 41 11 • Fax +41 44 923 38 44 • info@haeny.com • www.haeny.comwww.haeny.com